comparison test/testSbpOperators.jl @ 705:bf1387f867b8 feature/laplace_opset

Add tests for Laplace field getter functions
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Mon, 15 Feb 2021 17:53:13 +0100
parents 988e9cfcd58d
children 19301615b340
comparison
equal deleted inserted replaced
704:a7efedbdede9 705:bf1387f867b8
334 end 334 end
335 335
336 @testset "Laplace" begin 336 @testset "Laplace" begin
337 g_1D = EquidistantGrid(101, 0.0, 1.) 337 g_1D = EquidistantGrid(101, 0.0, 1.)
338 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) 338 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.))
339 op2 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
340 op4 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
339 @testset "Constructors" begin 341 @testset "Constructors" begin
340 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) 342
341 @testset "1D" begin 343 @testset "1D" begin
342 # Create all tensor mappings included in Laplace 344 # Create all tensor mappings included in Laplace
343 Δ = laplace(g_1D, op.innerStencil, op.closureStencils) 345 Δ = laplace(g_1D, op4.innerStencil, op4.closureStencils)
344 H = inner_product(g_1D, op.quadratureClosure) 346 H = inner_product(g_1D, op4.quadratureClosure)
345 Hi = inverse_inner_product(g_1D, op.quadratureClosure) 347 Hi = inverse_inner_product(g_1D, op4.quadratureClosure)
346 348
347 (id_l, id_r) = boundary_identifiers(g_1D) 349 (id_l, id_r) = boundary_identifiers(g_1D)
348 350
349 e_l = boundary_restriction(g_1D,op.eClosure,id_l) 351 e_l = boundary_restriction(g_1D,op4.eClosure,id_l)
350 e_r = boundary_restriction(g_1D,op.eClosure,id_r) 352 e_r = boundary_restriction(g_1D,op4.eClosure,id_r)
351 e_dict = Dict(Pair(id_l,e_l),Pair(id_r,e_r)) 353 e_dict = Dict(Pair(id_l,e_l),Pair(id_r,e_r))
352 354
353 d_l = normal_derivative(g_1D,op.dClosure,id_l) 355 d_l = normal_derivative(g_1D,op4.dClosure,id_l)
354 d_r = normal_derivative(g_1D,op.dClosure,id_r) 356 d_r = normal_derivative(g_1D,op4.dClosure,id_r)
355 d_dict = Dict(Pair(id_l,d_l),Pair(id_r,d_r)) 357 d_dict = Dict(Pair(id_l,d_l),Pair(id_r,d_r))
356 358
357 H_l = inner_product(boundary_grid(g_1D,id_l),op.quadratureClosure) 359 H_l = inner_product(boundary_grid(g_1D,id_l),op4.quadratureClosure)
358 H_r = inner_product(boundary_grid(g_1D,id_r),op.quadratureClosure) 360 H_r = inner_product(boundary_grid(g_1D,id_r),op4.quadratureClosure)
359 Hb_dict = Dict(Pair(id_l,H_l),Pair(id_r,H_r)) 361 Hb_dict = Dict(Pair(id_l,H_l),Pair(id_r,H_r))
360 362
361 L = Laplace(g_1D, sbp_operators_path()*"standard_diagonal.toml"; order=4) 363 L = Laplace(g_1D, sbp_operators_path()*"standard_diagonal.toml"; order=4)
362 @test cmp_fields(L,Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)) 364 @test cmp_fields(L,Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict))
363 @test L isa TensorMapping{T,1,1} where T 365 @test L isa TensorMapping{T,1,1} where T
364 @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) 366 @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)
365 end 367 end
366 @testset "3D" begin 368 @testset "3D" begin
367 # Create all tensor mappings included in Laplace 369 # Create all tensor mappings included in Laplace
368 Δ = laplace(g_3D, op.innerStencil, op.closureStencils) 370 Δ = laplace(g_3D, op4.innerStencil, op4.closureStencils)
369 H = inner_product(g_3D, op.quadratureClosure) 371 H = inner_product(g_3D, op4.quadratureClosure)
370 Hi = inverse_inner_product(g_3D, op.quadratureClosure) 372 Hi = inverse_inner_product(g_3D, op4.quadratureClosure)
371 373
372 (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) 374 (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D)
373 375
374 e_l = boundary_restriction(g_3D,op.eClosure,id_l) 376 e_l = boundary_restriction(g_3D,op4.eClosure,id_l)
375 e_r = boundary_restriction(g_3D,op.eClosure,id_r) 377 e_r = boundary_restriction(g_3D,op4.eClosure,id_r)
376 e_s = boundary_restriction(g_3D,op.eClosure,id_s) 378 e_s = boundary_restriction(g_3D,op4.eClosure,id_s)
377 e_n = boundary_restriction(g_3D,op.eClosure,id_n) 379 e_n = boundary_restriction(g_3D,op4.eClosure,id_n)
378 e_b = boundary_restriction(g_3D,op.eClosure,id_b) 380 e_b = boundary_restriction(g_3D,op4.eClosure,id_b)
379 e_t = boundary_restriction(g_3D,op.eClosure,id_t) 381 e_t = boundary_restriction(g_3D,op4.eClosure,id_t)
380 e_dict = Dict(Pair(id_l,e_l),Pair(id_r,e_r), 382 e_dict = Dict(Pair(id_l,e_l),Pair(id_r,e_r),
381 Pair(id_s,e_s),Pair(id_n,e_n), 383 Pair(id_s,e_s),Pair(id_n,e_n),
382 Pair(id_b,e_b),Pair(id_t,e_t)) 384 Pair(id_b,e_b),Pair(id_t,e_t))
383 385
384 d_l = normal_derivative(g_3D,op.dClosure,id_l) 386 d_l = normal_derivative(g_3D,op4.dClosure,id_l)
385 d_r = normal_derivative(g_3D,op.dClosure,id_r) 387 d_r = normal_derivative(g_3D,op4.dClosure,id_r)
386 d_s = normal_derivative(g_3D,op.dClosure,id_s) 388 d_s = normal_derivative(g_3D,op4.dClosure,id_s)
387 d_n = normal_derivative(g_3D,op.dClosure,id_n) 389 d_n = normal_derivative(g_3D,op4.dClosure,id_n)
388 d_b = normal_derivative(g_3D,op.dClosure,id_b) 390 d_b = normal_derivative(g_3D,op4.dClosure,id_b)
389 d_t = normal_derivative(g_3D,op.dClosure,id_t) 391 d_t = normal_derivative(g_3D,op4.dClosure,id_t)
390 d_dict = Dict(Pair(id_l,d_l),Pair(id_r,d_r), 392 d_dict = Dict(Pair(id_l,d_l),Pair(id_r,d_r),
391 Pair(id_s,d_s),Pair(id_n,d_n), 393 Pair(id_s,d_s),Pair(id_n,d_n),
392 Pair(id_b,d_b),Pair(id_t,d_t)) 394 Pair(id_b,d_b),Pair(id_t,d_t))
393 395
394 H_l = inner_product(boundary_grid(g_3D,id_l),op.quadratureClosure) 396 H_l = inner_product(boundary_grid(g_3D,id_l),op4.quadratureClosure)
395 H_r = inner_product(boundary_grid(g_3D,id_r),op.quadratureClosure) 397 H_r = inner_product(boundary_grid(g_3D,id_r),op4.quadratureClosure)
396 H_s = inner_product(boundary_grid(g_3D,id_s),op.quadratureClosure) 398 H_s = inner_product(boundary_grid(g_3D,id_s),op4.quadratureClosure)
397 H_n = inner_product(boundary_grid(g_3D,id_n),op.quadratureClosure) 399 H_n = inner_product(boundary_grid(g_3D,id_n),op4.quadratureClosure)
398 H_b = inner_product(boundary_grid(g_3D,id_b),op.quadratureClosure) 400 H_b = inner_product(boundary_grid(g_3D,id_b),op4.quadratureClosure)
399 H_t = inner_product(boundary_grid(g_3D,id_t),op.quadratureClosure) 401 H_t = inner_product(boundary_grid(g_3D,id_t),op4.quadratureClosure)
400 Hb_dict = Dict(Pair(id_l,H_l),Pair(id_r,H_r), 402 Hb_dict = Dict(Pair(id_l,H_l),Pair(id_r,H_r),
401 Pair(id_s,H_s),Pair(id_n,H_n), 403 Pair(id_s,H_s),Pair(id_n,H_n),
402 Pair(id_b,H_b),Pair(id_t,H_t)) 404 Pair(id_b,H_b),Pair(id_t,H_t))
403 405
404 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) 406 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4)
407 @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) 409 @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)
408 end 410 end
409 end 411 end
410 412
411 @testset "laplace" begin 413 @testset "laplace" begin
412 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) 414 @testset "1D" begin
413 @testset "1D" begin 415 L = laplace(g_1D, op4.innerStencil, op4.closureStencils)
414 L = laplace(g_1D, op.innerStencil, op.closureStencils) 416 @test L == second_derivative(g_1D, op4.innerStencil, op4.closureStencils)
415 @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils)
416 @test L isa TensorMapping{T,1,1} where T 417 @test L isa TensorMapping{T,1,1} where T
417 end 418 end
418 @testset "3D" begin 419 @testset "3D" begin
419 L = laplace(g_3D, op.innerStencil, op.closureStencils) 420 L = laplace(g_3D, op4.innerStencil, op4.closureStencils)
420 @test L isa TensorMapping{T,3,3} where T 421 @test L isa TensorMapping{T,3,3} where T
421 Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1) 422 Dxx = second_derivative(g_3D, op4.innerStencil, op4.closureStencils,1)
422 Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2) 423 Dyy = second_derivative(g_3D, op4.innerStencil, op4.closureStencils,2)
423 Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3) 424 Dzz = second_derivative(g_3D, op4.innerStencil, op4.closureStencils,3)
424 @test L == Dxx + Dyy + Dzz 425 @test L == Dxx + Dyy + Dzz
425 @test L isa TensorMapping{T,3,3} where T 426 @test L isa TensorMapping{T,3,3} where T
426 end 427 end
427 end 428 end
428 429
429 @testset "quadrature" begin 430 @testset "inner_product" begin
430 end 431 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4)
431 432 @test inner_product(L) == inner_product(g_3D,op4.quadratureClosure)
432 @testset "inverse_quadrature" begin 433 end
434
435 @testset "inverse_inner_product" begin
436 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4)
437 @test inverse_inner_product(L) == inverse_inner_product(g_3D,op4.quadratureClosure)
433 end 438 end
434 439
435 @testset "boundary_restriction" begin 440 @testset "boundary_restriction" begin
436 end 441 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4)
437 442 id_l = CartesianBoundary{1,Lower}()
438 @testset "normal_restriction" begin 443 id_r = CartesianBoundary{1,Upper}()
444 id_s = CartesianBoundary{2,Lower}()
445 id_n = CartesianBoundary{2,Upper}()
446 id_b = CartesianBoundary{3,Lower}()
447 id_t = CartesianBoundary{3,Upper}()
448 @test boundary_restriction(L,id_l) == boundary_restriction(g_3D,op4.eClosure,id_l)
449 @test boundary_restriction(L,id_r) == boundary_restriction(g_3D,op4.eClosure,id_r)
450 @test boundary_restriction(L,id_s) == boundary_restriction(g_3D,op4.eClosure,id_s)
451 @test boundary_restriction(L,id_n) == boundary_restriction(g_3D,op4.eClosure,id_n)
452 @test boundary_restriction(L,id_b) == boundary_restriction(g_3D,op4.eClosure,id_b)
453 @test boundary_restriction(L,id_t) == boundary_restriction(g_3D,op4.eClosure,id_t)
454 end
455
456 @testset "normal_derivative" begin
457 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4)
458 id_l = CartesianBoundary{1,Lower}()
459 id_r = CartesianBoundary{1,Upper}()
460 id_s = CartesianBoundary{2,Lower}()
461 id_n = CartesianBoundary{2,Upper}()
462 id_b = CartesianBoundary{3,Lower}()
463 id_t = CartesianBoundary{3,Upper}()
464 @test normal_derivative(L,id_l) == normal_derivative(g_3D,op4.dClosure,id_l)
465 @test normal_derivative(L,id_r) == normal_derivative(g_3D,op4.dClosure,id_r)
466 @test normal_derivative(L,id_s) == normal_derivative(g_3D,op4.dClosure,id_s)
467 @test normal_derivative(L,id_n) == normal_derivative(g_3D,op4.dClosure,id_n)
468 @test normal_derivative(L,id_b) == normal_derivative(g_3D,op4.dClosure,id_b)
469 @test normal_derivative(L,id_t) == normal_derivative(g_3D,op4.dClosure,id_t)
439 end 470 end
440 471
441 @testset "boundary_quadrature" begin 472 @testset "boundary_quadrature" begin
473 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4)
474 id_l = CartesianBoundary{1,Lower}()
475 id_r = CartesianBoundary{1,Upper}()
476 id_s = CartesianBoundary{2,Lower}()
477 id_n = CartesianBoundary{2,Upper}()
478 id_b = CartesianBoundary{3,Lower}()
479 id_t = CartesianBoundary{3,Upper}()
480 @test boundary_quadrature(L,id_l) == inner_product(boundary_grid(g_3D,id_l),op4.quadratureClosure)
481 @test boundary_quadrature(L,id_r) == inner_product(boundary_grid(g_3D,id_r),op4.quadratureClosure)
482 @test boundary_quadrature(L,id_s) == inner_product(boundary_grid(g_3D,id_s),op4.quadratureClosure)
483 @test boundary_quadrature(L,id_n) == inner_product(boundary_grid(g_3D,id_n),op4.quadratureClosure)
484 @test boundary_quadrature(L,id_b) == inner_product(boundary_grid(g_3D,id_b),op4.quadratureClosure)
485 @test boundary_quadrature(L,id_t) == inner_product(boundary_grid(g_3D,id_t),op4.quadratureClosure)
442 end 486 end
443 487
444 # Exact differentiation is measured point-wise. In other cases 488 # Exact differentiation is measured point-wise. In other cases
445 # the error is measured in the l2-norm. 489 # the error is measured in the l2-norm.
446 @testset "Accuracy" begin 490 @testset "Accuracy" begin
455 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) 499 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z))
456 500
457 # 2nd order interior stencil, 1st order boundary stencil, 501 # 2nd order interior stencil, 1st order boundary stencil,
458 # implies that L*v should be exact for binomials up to order 2. 502 # implies that L*v should be exact for binomials up to order 2.
459 @testset "2nd order" begin 503 @testset "2nd order" begin
460 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) 504 L = laplace(g_3D,op2.innerStencil,op2.closureStencils)
461 L = laplace(g_3D,op.innerStencil,op.closureStencils)
462 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 505 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
463 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 506 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
464 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 507 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9
465 @test L*v ≈ Δv rtol = 5e-2 norm = l2 508 @test L*v ≈ Δv rtol = 5e-2 norm = l2
466 end 509 end
467 510
468 # 4th order interior stencil, 2nd order boundary stencil, 511 # 4th order interior stencil, 2nd order boundary stencil,
469 # implies that L*v should be exact for binomials up to order 3. 512 # implies that L*v should be exact for binomials up to order 3.
470 @testset "4th order" begin 513 @testset "4th order" begin
471 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) 514 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
472 L = laplace(g_3D,op.innerStencil,op.closureStencils) 515 L = laplace(g_3D,op4.innerStencil,op4.closureStencils)
473 # NOTE: high tolerances for checking the "exact" differentiation 516 # NOTE: high tolerances for checking the "exact" differentiation
474 # due to accumulation of round-off errors/cancellation errors? 517 # due to accumulation of round-off errors/cancellation errors?
475 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 518 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
476 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 519 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
477 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 520 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9