comparison src/SbpOperators/volumeops/volume_operator.jl @ 1395:bdcdbd4ea9cd feature/boundary_conditions

Merge with default. Comment out broken tests for boundary_conditions at sat
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Wed, 26 Jul 2023 21:35:50 +0200
parents ff64acfc1ec9
children aba2ce166546
comparison
equal deleted inserted replaced
1217:ea2e8254820a 1395:bdcdbd4ea9cd
1 """
2 volume_operator(grid, inner_stencil, closure_stencils, parity, direction)
3
4 Creates a volume operator on a `Dim`-dimensional grid acting along the
5 specified coordinate `direction`. The action of the operator is determined by
6 the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the
7 corresponding `VolumeOperator` tensor mapping is returned. When `Dim>1`, the
8 returned operator is the appropriate outer product of a one-dimensional
9 operators and `IdentityTensor`s, e.g for `Dim=3` the volume operator in the
10 y-direction is `I⊗op⊗I`.
11 """
12 function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction)
13 #TODO: Check that direction <= Dim?
14
15 # Create 1D volume operator in along coordinate direction
16 op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity)
17 # Create 1D IdentityTensors for each coordinate direction
18 one_d_grids = restrict.(Ref(grid), Tuple(dims(grid)))
19 Is = IdentityTensor{eltype(grid)}.(size.(one_d_grids))
20 # Formulate the correct outer product sequence of the identity mappings and
21 # the volume operator
22 parts = Base.setindex(Is, op, direction)
23 return foldl(⊗, parts)
24 end
25
26 """ 1 """
27 VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} 2 VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1}
28 Implements a one-dimensional constant coefficients volume operator 3
4 A one-dimensional constant coefficients stencil operator.
29 """ 5 """
30 struct VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} 6 struct VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1}
31 inner_stencil::Stencil{T,N} 7 inner_stencil::Stencil{T,N}
32 closure_stencils::NTuple{M,Stencil{T,K}} 8 closure_stencils::NTuple{M,Stencil{T,K}}
33 size::NTuple{1,Int} 9 size::NTuple{1,Int}
34 parity::Parity 10 parity::Parity
35 end 11 end
36 12
37 function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity) 13 function VolumeOperator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity)
38 return VolumeOperator(inner_stencil, Tuple(closure_stencils), size(grid), parity) 14 return VolumeOperator(inner_stencil, Tuple(closure_stencils), size(grid), parity)
39 end 15 end # TBD: Remove this function?
40 16
41 closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M 17 closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M
42 18
43 LazyTensors.range_size(op::VolumeOperator) = op.size 19 LazyTensors.range_size(op::VolumeOperator) = op.size
44 LazyTensors.domain_size(op::VolumeOperator) = op.size 20 LazyTensors.domain_size(op::VolumeOperator) = op.size
57 33
58 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i) 34 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i)
59 r = getregion(i, closure_size(op), op.size[1]) 35 r = getregion(i, closure_size(op), op.size[1])
60 return LazyTensors.apply(op, v, Index(i, r)) 36 return LazyTensors.apply(op, v, Index(i, r))
61 end 37 end
38 # TODO: Move this to LazyTensors when we have the region communication down.