Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/volume_operator.jl @ 1395:bdcdbd4ea9cd feature/boundary_conditions
Merge with default. Comment out broken tests for boundary_conditions at sat
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 26 Jul 2023 21:35:50 +0200 |
parents | ff64acfc1ec9 |
children | aba2ce166546 |
comparison
equal
deleted
inserted
replaced
1217:ea2e8254820a | 1395:bdcdbd4ea9cd |
---|---|
1 """ | |
2 volume_operator(grid, inner_stencil, closure_stencils, parity, direction) | |
3 | |
4 Creates a volume operator on a `Dim`-dimensional grid acting along the | |
5 specified coordinate `direction`. The action of the operator is determined by | |
6 the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the | |
7 corresponding `VolumeOperator` tensor mapping is returned. When `Dim>1`, the | |
8 returned operator is the appropriate outer product of a one-dimensional | |
9 operators and `IdentityTensor`s, e.g for `Dim=3` the volume operator in the | |
10 y-direction is `I⊗op⊗I`. | |
11 """ | |
12 function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction) | |
13 #TODO: Check that direction <= Dim? | |
14 | |
15 # Create 1D volume operator in along coordinate direction | |
16 op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity) | |
17 # Create 1D IdentityTensors for each coordinate direction | |
18 one_d_grids = restrict.(Ref(grid), Tuple(dims(grid))) | |
19 Is = IdentityTensor{eltype(grid)}.(size.(one_d_grids)) | |
20 # Formulate the correct outer product sequence of the identity mappings and | |
21 # the volume operator | |
22 parts = Base.setindex(Is, op, direction) | |
23 return foldl(⊗, parts) | |
24 end | |
25 | |
26 """ | 1 """ |
27 VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} | 2 VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} |
28 Implements a one-dimensional constant coefficients volume operator | 3 |
4 A one-dimensional constant coefficients stencil operator. | |
29 """ | 5 """ |
30 struct VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} | 6 struct VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} |
31 inner_stencil::Stencil{T,N} | 7 inner_stencil::Stencil{T,N} |
32 closure_stencils::NTuple{M,Stencil{T,K}} | 8 closure_stencils::NTuple{M,Stencil{T,K}} |
33 size::NTuple{1,Int} | 9 size::NTuple{1,Int} |
34 parity::Parity | 10 parity::Parity |
35 end | 11 end |
36 | 12 |
37 function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity) | 13 function VolumeOperator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity) |
38 return VolumeOperator(inner_stencil, Tuple(closure_stencils), size(grid), parity) | 14 return VolumeOperator(inner_stencil, Tuple(closure_stencils), size(grid), parity) |
39 end | 15 end # TBD: Remove this function? |
40 | 16 |
41 closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M | 17 closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M |
42 | 18 |
43 LazyTensors.range_size(op::VolumeOperator) = op.size | 19 LazyTensors.range_size(op::VolumeOperator) = op.size |
44 LazyTensors.domain_size(op::VolumeOperator) = op.size | 20 LazyTensors.domain_size(op::VolumeOperator) = op.size |
57 | 33 |
58 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i) | 34 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i) |
59 r = getregion(i, closure_size(op), op.size[1]) | 35 r = getregion(i, closure_size(op), op.size[1]) |
60 return LazyTensors.apply(op, v, Index(i, r)) | 36 return LazyTensors.apply(op, v, Index(i, r)) |
61 end | 37 end |
38 # TODO: Move this to LazyTensors when we have the region communication down. |