comparison test/SbpOperators/volumeops/derivatives/first_derivative_test.jl @ 974:ba023fc09961 feature/first_derivative

Add stencil_set method and accuracy tests
author Jonatan Werpers <jonatan@werpers.com>
date Tue, 15 Mar 2022 07:29:41 +0100
parents 803f60f461c1
children 1a05009e731b
comparison
equal deleted inserted replaced
973:4c17a7d6ae5e 974:ba023fc09961
1 using Test 1 using Test
2 2
3 using Sbplib.SbpOperators 3 using Sbplib.SbpOperators
4 using Sbplib.Grids 4 using Sbplib.Grids
5 5
6 using Sbplib.SbpOperators: closure_size
7
8 """
9 monomial(x,k)
10
11 Evaluates ``x^k/k!` with the convetion that it is ``0`` for all ``k<0``.
12 Has the property that ``d/dx monomial(x,k) = monomial(x,k-1)``
13 """
14 function monomial(x,k)
15 if k < 0
16 return zero(x)
17 end
18 x^k/factorial(k)
19 end
20
21 @testset "first_derivative" begin
22 @testset "accuracy" begin
23 N = 20
24 g = EquidistantGrid(N, 0//1,2//1)
25 @testset for order ∈ [2,4]
26 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order)
27 D₁ = first_derivative(g, stencil_set, 1)
28
29 @testset "boundary accuracy $k" for k ∈ 0:order÷2
30 v = evalOn(g, x->monomial(x,k))
31
32 @testset for i ∈ 1:closure_size(D₁)
33 x, = points(g)[i]
34 @test (D₁*v)[i] == monomial(x,k-1)
35 end
36
37 @testset for i ∈ (N-closure_size(D₁)+1):N
38 x, = points(g)[i]
39 @test (D₁*v)[i] == monomial(x,k-1)
40 end
41 end
42
43 @testset "interior accuracy $k" for k ∈ 0:order
44 v = evalOn(g, x->monomial(x,k))
45
46 x, = points(g)[10]
47 @test (D₁*v)[10] == monomial(x,k-1)
48 end
49 end
50 end
51 end
52