Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/laplace/laplace_test.jl @ 1649:b02917bcd7d5 feature/grids/curvilinear
Merge default
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Wed, 26 Jun 2024 12:41:03 +0200 |
| parents | b74e1a21265f |
| children | 707fc9761c2b 471a948cd2b2 |
comparison
equal
deleted
inserted
replaced
| 1645:64452a678e7a | 1649:b02917bcd7d5 |
|---|---|
| 86 @test Δ == Dxx + Dyy + Dzz | 86 @test Δ == Dxx + Dyy + Dzz |
| 87 @test Δ isa LazyTensor{Float64,3,3} | 87 @test Δ isa LazyTensor{Float64,3,3} |
| 88 end | 88 end |
| 89 end | 89 end |
| 90 | 90 |
| 91 @testset "sat_tensors" begin | |
| 92 # TODO: The following tests should be implemented | |
| 93 # 1. Symmetry D'H == H'D (test_broken below) | |
| 94 # 2. Test eigenvalues of and/or solution to Poisson | |
| 95 # 3. Test tuning of Dirichlet conditions | |
| 96 # | |
| 97 # These tests are likely easiest to implement once | |
| 98 # we have support for generating matrices from tensors. | |
| 99 | |
| 100 operator_path = sbp_operators_path()*"standard_diagonal.toml" | |
| 101 orders = (2,4) | |
| 102 tols = (5e-2,5e-4) | |
| 103 sz = (201,401) | |
| 104 g = equidistant_grid((0.,0.), (1.,1.), sz...) | |
| 105 | |
| 106 # Verify implementation of sat_tensors by testing accuracy and symmetry (TODO) | |
| 107 # of the operator D = Δ + SAT, where SAT is the tensor composition of the | |
| 108 # operators from sat_tensor. Note that SAT*u should approximate 0 for the | |
| 109 # conditions chosen. | |
| 110 | |
| 111 @testset "Dirichlet" begin | |
| 112 for (o, tol) ∈ zip(orders,tols) | |
| 113 stencil_set = read_stencil_set(operator_path; order=o) | |
| 114 Δ = Laplace(g, stencil_set) | |
| 115 H = inner_product(g, stencil_set) | |
| 116 u = collect(eval_on(g, (x,y) -> sin(π*x)sin(2*π*y))) | |
| 117 Δu = collect(eval_on(g, (x,y) -> -5*π^2*sin(π*x)sin(2*π*y))) | |
| 118 D = Δ | |
| 119 for id ∈ boundary_identifiers(g) | |
| 120 D = D + foldl(∘, sat_tensors(Δ, g, DirichletCondition(0., id))) | |
| 121 end | |
| 122 e = D*u .- Δu | |
| 123 # Accuracy | |
| 124 @test sqrt(sum(H*e.^2)) ≈ 0 atol = tol | |
| 125 # Symmetry | |
| 126 r = randn(size(u)) | |
| 127 @test_broken (D'∘H - H∘D)*r .≈ 0 atol = 1e-13 # TODO: Need to implement apply_transpose for D. | |
| 128 end | |
| 129 end | |
| 130 | |
| 131 @testset "Neumann" begin | |
| 132 @testset "Dirichlet" begin | |
| 133 for (o, tol) ∈ zip(orders,tols) | |
| 134 stencil_set = read_stencil_set(operator_path; order=o) | |
| 135 Δ = Laplace(g, stencil_set) | |
| 136 H = inner_product(g, stencil_set) | |
| 137 u = collect(eval_on(g, (x,y) -> cos(π*x)cos(2*π*y))) | |
| 138 Δu = collect(eval_on(g, (x,y) -> -5*π^2*cos(π*x)cos(2*π*y))) | |
| 139 D = Δ | |
| 140 for id ∈ boundary_identifiers(g) | |
| 141 D = D + foldl(∘, sat_tensors(Δ, g, NeumannCondition(0., id))) | |
| 142 end | |
| 143 e = D*u .- Δu | |
| 144 # Accuracy | |
| 145 @test sqrt(sum(H*e.^2)) ≈ 0 atol = tol | |
| 146 # Symmetry | |
| 147 r = randn(size(u)) | |
| 148 @test_broken (D'∘H - H∘D)*r .≈ 0 atol = 1e-13 # TODO: Need to implement apply_transpose for D. | |
| 149 end | |
| 150 end | |
| 151 end | |
| 152 end | |
| 153 |
