Mercurial > repos > public > sbplib_julia
comparison SbpOperators/src/laplace/laplace.jl @ 300:b00eea62c78e
Create 1D tensor mapping for diagonal norm quadratures, and make the multi-dimensional quadrature use those. Move Qudrature from laplace.jl into Quadrature.jl
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 23 Jun 2020 17:32:54 +0200 |
parents | f63232aeb1c6 |
children | 6fa2ba769ae3 |
comparison
equal
deleted
inserted
replaced
299:27a0bca5e1f2 | 300:b00eea62c78e |
---|---|
1 """ | 1 """ |
2 Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} | 2 Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} |
3 | 3 |
4 Implements the Laplace operator `L` in Dim dimensions as a tensor operator | 4 Implements the Laplace operator `L` in Dim dimensions as a tensor operator |
5 The multi-dimensional tensor operator simply consists of a tuple of the 1D | 5 The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative |
6 Laplace tensor operator as defined by ConstantLaplaceOperator. | 6 tensor operators. |
7 """ | 7 """ |
8 struct Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} | 8 struct Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} |
9 D2::NTuple(Dim,SecondDerivative{T,N,M,K}) | 9 D2::NTuple(Dim,SecondDerivative{T,N,M,K}) |
10 #TODO: Write a good constructor | 10 #TODO: Write a good constructor |
11 end | 11 end |
15 | 15 |
16 function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} | 16 function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} |
17 error("not implemented") | 17 error("not implemented") |
18 end | 18 end |
19 | 19 |
20 function LazyTensors.apply_transpose(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} = LazyTensors.apply(L, v, I) | |
21 | |
20 # u = L*v | 22 # u = L*v |
21 function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T | 23 function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T |
22 return apply(L.D2[1],v,I) | 24 @inbounds u = apply(L.D2[1],v,I) |
25 return u | |
23 end | 26 end |
24 | 27 |
25 | 28 |
26 @inline function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T | 29 @inline function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T |
27 # 2nd x-derivative | 30 # 2nd x-derivative |
28 @inbounds vx = view(v, :, Int(I[2])) | 31 @inbounds vx = view(v, :, Int(I[2])) |
29 @inbounds uᵢ = apply(L.D2[1], vx , (I[1],)) #Tuple conversion here is ugly. How to do it? Should we use indexing here? | 32 @inbounds uᵢ = apply(L.D2[1], vx , I[1]) |
30 | 33 |
31 # 2nd y-derivative | 34 # 2nd y-derivative |
32 @inbounds vy = view(v, Int(I[1]), :) | 35 @inbounds vy = view(v, Int(I[1]), :) |
33 @inbounds uᵢ += apply(L.D2[2], vy , (I[2],)) #Tuple conversion here is ugly. How to do it? | 36 @inbounds uᵢ += apply(L.D2[2], vy , I[2]) |
34 | 37 |
35 return uᵢ | 38 return uᵢ |
36 end | 39 end |
37 | 40 |
38 quadrature(L::Laplace) = Quadrature(L.op, L.grid) | 41 quadrature(L::Laplace) = Quadrature(L.op, L.grid) |
39 inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) | 42 inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) |
40 boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) | 43 boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) |
41 normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) | 44 normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) |
42 boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) | 45 boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) |
43 export quadrature | 46 export quadrature |
44 | |
45 # At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings | |
46 """ | |
47 Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | |
48 | |
49 Implements the quadrature operator `H` of Dim dimension as a TensorMapping | |
50 """ | |
51 struct Quadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} | |
52 op::D2{T,N,M,K} | |
53 grid::EquidistantGrid{Dim,T} | |
54 end | |
55 export Quadrature | |
56 | |
57 LazyTensors.domain_size(H::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size | |
58 | |
59 @inline function LazyTensors.apply(H::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T | |
60 N = size(H.grid) | |
61 # Quadrature in x direction | |
62 @inbounds q = apply_quadrature(H.op, spacing(H.grid)[1], v[I] , I[1], N[1]) | |
63 # Quadrature in y-direction | |
64 @inbounds q = apply_quadrature(H.op, spacing(H.grid)[2], q, I[2], N[2]) | |
65 return q | |
66 end | |
67 | |
68 LazyTensors.apply_transpose(H::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I) | |
69 | 47 |
70 | 48 |
71 """ | 49 """ |
72 InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | 50 InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} |
73 | 51 |