Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/laplace/laplace_test.jl @ 864:9a2776352c2a
Merge operator_storage_array_of_table
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 19 Jan 2022 11:08:43 +0100 |
parents | 24df68453890 |
children | 1784b1c0af3e |
comparison
equal
deleted
inserted
replaced
858:5088de9b6d65 | 864:9a2776352c2a |
---|---|
6 | 6 |
7 @testset "Laplace" begin | 7 @testset "Laplace" begin |
8 g_1D = EquidistantGrid(101, 0.0, 1.) | 8 g_1D = EquidistantGrid(101, 0.0, 1.) |
9 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) | 9 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) |
10 @testset "Constructors" begin | 10 @testset "Constructors" begin |
11 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 11 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
12 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | |
13 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
12 @testset "1D" begin | 14 @testset "1D" begin |
13 L = laplace(g_1D, op.innerStencil, op.closureStencils) | 15 L = laplace(g_1D, inner_stencil, closure_stencils) |
14 @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils) | 16 @test L == second_derivative(g_1D, inner_stencil, closure_stencils) |
15 @test L isa TensorMapping{T,1,1} where T | 17 @test L isa TensorMapping{T,1,1} where T |
16 end | 18 end |
17 @testset "3D" begin | 19 @testset "3D" begin |
18 L = laplace(g_3D, op.innerStencil, op.closureStencils) | 20 L = laplace(g_3D, inner_stencil, closure_stencils) |
19 @test L isa TensorMapping{T,3,3} where T | 21 @test L isa TensorMapping{T,3,3} where T |
20 Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1) | 22 Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1) |
21 Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2) | 23 Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2) |
22 Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3) | 24 Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3) |
23 @test L == Dxx + Dyy + Dzz | 25 @test L == Dxx + Dyy + Dzz |
24 end | 26 end |
25 end | 27 end |
26 | 28 |
27 # Exact differentiation is measured point-wise. In other cases | 29 # Exact differentiation is measured point-wise. In other cases |
38 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) | 40 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) |
39 | 41 |
40 # 2nd order interior stencil, 1st order boundary stencil, | 42 # 2nd order interior stencil, 1st order boundary stencil, |
41 # implies that L*v should be exact for binomials up to order 2. | 43 # implies that L*v should be exact for binomials up to order 2. |
42 @testset "2nd order" begin | 44 @testset "2nd order" begin |
43 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 45 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
44 L = laplace(g_3D,op.innerStencil,op.closureStencils) | 46 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) |
47 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
48 L = laplace(g_3D, inner_stencil, closure_stencils) | |
45 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | 49 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 |
46 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | 50 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 |
47 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 | 51 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 |
48 @test L*v ≈ Δv rtol = 5e-2 norm = l2 | 52 @test L*v ≈ Δv rtol = 5e-2 norm = l2 |
49 end | 53 end |
50 | 54 |
51 # 4th order interior stencil, 2nd order boundary stencil, | 55 # 4th order interior stencil, 2nd order boundary stencil, |
52 # implies that L*v should be exact for binomials up to order 3. | 56 # implies that L*v should be exact for binomials up to order 3. |
53 @testset "4th order" begin | 57 @testset "4th order" begin |
54 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 58 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
55 L = laplace(g_3D,op.innerStencil,op.closureStencils) | 59 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) |
60 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
61 L = laplace(g_3D, inner_stencil, closure_stencils) | |
56 # NOTE: high tolerances for checking the "exact" differentiation | 62 # NOTE: high tolerances for checking the "exact" differentiation |
57 # due to accumulation of round-off errors/cancellation errors? | 63 # due to accumulation of round-off errors/cancellation errors? |
58 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | 64 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 |
59 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | 65 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 |
60 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 | 66 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 |