Mercurial > repos > public > sbplib_julia
comparison src/Grids/equidistant_grid.jl @ 1143:9275d95e2d90 refactor/grids
Merge with default
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Wed, 19 Oct 2022 22:36:02 +0200 |
| parents | src/Grids/EquidistantGrid.jl@c4ea28d904f5 src/Grids/EquidistantGrid.jl@dfbd62c7eb09 |
| children | 31041ef8092a |
comparison
equal
deleted
inserted
replaced
| 1092:c4ea28d904f5 | 1143:9275d95e2d90 |
|---|---|
| 1 | |
| 2 """ | |
| 3 EquidistantGrid{Dim,T<:Real} <: Grid | |
| 4 | |
| 5 `Dim`-dimensional equidistant grid with coordinates of type `T`. | |
| 6 """ | |
| 7 struct EquidistantGrid{Dim,T<:Real} <: Grid | |
| 8 size::NTuple{Dim, Int} | |
| 9 limit_lower::NTuple{Dim, T} | |
| 10 limit_upper::NTuple{Dim, T} | |
| 11 | |
| 12 function EquidistantGrid{Dim,T}(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where {Dim,T} | |
| 13 if any(size .<= 0) | |
| 14 throw(DomainError("all components of size must be postive")) | |
| 15 end | |
| 16 if any(limit_upper.-limit_lower .<= 0) | |
| 17 throw(DomainError("all side lengths must be postive")) | |
| 18 end | |
| 19 return new{Dim,T}(size, limit_lower, limit_upper) | |
| 20 end | |
| 21 end | |
| 22 | |
| 23 """ | |
| 24 EquidistantGrid(size, limit_lower, limit_upper) | |
| 25 | |
| 26 Construct an equidistant grid with corners at the coordinates `limit_lower` and | |
| 27 `limit_upper`. | |
| 28 | |
| 29 The length of the domain sides are given by the components of | |
| 30 `limit_upper-limit_lower`. E.g for a 2D grid with `limit_lower=(-1,0)` and `limit_upper=(1,2)` the domain is defined | |
| 31 as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative. | |
| 32 | |
| 33 The number of equidistantly spaced points in each coordinate direction are given | |
| 34 by the tuple `size`. | |
| 35 """ | |
| 36 function EquidistantGrid(size, limit_lower, limit_upper) | |
| 37 return EquidistantGrid{length(size), eltype(limit_lower)}(size, limit_lower, limit_upper) | |
| 38 end | |
| 39 # TBD: Should it be an AbstractArray? | |
| 40 | |
| 41 """ | |
| 42 EquidistantGrid{T}() | |
| 43 | |
| 44 Constructs a 0-dimensional grid. | |
| 45 """ | |
| 46 EquidistantGrid{T}() where T = EquidistantGrid{0,T}((),(),()) # Convenience constructor for 0-dim grid | |
| 47 | |
| 48 | |
| 49 """ | |
| 50 EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) | |
| 51 | |
| 52 Convenience constructor for 1D grids. | |
| 53 """ | |
| 54 function EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) where T | |
| 55 return EquidistantGrid((size,),(limit_lower,),(limit_upper,)) | |
| 56 end | |
| 57 | |
| 58 Base.eltype(grid::EquidistantGrid{Dim,T}) where {Dim,T} = T | |
| 59 | |
| 60 Base.eachindex(grid::EquidistantGrid) = CartesianIndices(grid.size) | |
| 61 | |
| 62 Base.size(g::EquidistantGrid) = g.size | |
| 63 | |
| 64 Base.ndims(::EquidistantGrid{Dim}) where Dim = Dim | |
| 65 | |
| 66 function Base.getindex(g::EquidistantGrid, I::Vararg{Int}) | |
| 67 h = spacing(g) | |
| 68 return g.limit_lower .+ (I.-1).*h | |
| 69 end | |
| 70 | |
| 71 Base.getindex(g::EquidistantGrid, I::CartesianIndex) = g[Tuple(I)...] | |
| 72 # TBD: Can this method be removed if `EquidistantGrid` is an AbstractArray? | |
| 73 | |
| 74 | |
| 75 | |
| 76 | |
| 77 """ | |
| 78 spacing(grid::EquidistantGrid) | |
| 79 | |
| 80 The spacing between grid points. | |
| 81 """ | |
| 82 spacing(grid::EquidistantGrid) = (grid.limit_upper.-grid.limit_lower)./(grid.size.-1) | |
| 83 | |
| 84 | |
| 85 """ | |
| 86 inverse_spacing(grid::EquidistantGrid) | |
| 87 | |
| 88 The reciprocal of the spacing between grid points. | |
| 89 """ | |
| 90 inverse_spacing(grid::EquidistantGrid) = 1 ./ spacing(grid) | |
| 91 | |
| 92 | |
| 93 """ | |
| 94 points(grid::EquidistantGrid) | |
| 95 | |
| 96 The point of the grid as an array of tuples with the same dimension as the grid. | |
| 97 The points are stored as [(x1,y1), (x1,y2), … (x1,yn); | |
| 98 (x2,y1), (x2,y2), … (x2,yn); | |
| 99 ⋮ ⋮ ⋮ | |
| 100 (xm,y1), (xm,y2), … (xm,yn)] | |
| 101 """ | |
| 102 function points(grid::EquidistantGrid) | |
| 103 indices = Tuple.(CartesianIndices(grid.size)) | |
| 104 h = spacing(grid) | |
| 105 return broadcast(I -> grid.limit_lower .+ (I.-1).*h, indices) | |
| 106 end | |
| 107 | |
| 108 """ | |
| 109 restrict(::EquidistantGrid, dim) | |
| 110 | |
| 111 Pick out given dimensions from the grid and return a grid for them. | |
| 112 """ | |
| 113 function restrict(grid::EquidistantGrid, dim) | |
| 114 size = grid.size[dim] | |
| 115 limit_lower = grid.limit_lower[dim] | |
| 116 limit_upper = grid.limit_upper[dim] | |
| 117 | |
| 118 return EquidistantGrid(size, limit_lower, limit_upper) | |
| 119 end | |
| 120 | |
| 121 | |
| 122 """ | |
| 123 orthogonal_dims(grid::EquidistantGrid,dim) | |
| 124 | |
| 125 Returns the dimensions of grid orthogonal to that of dim. | |
| 126 """ | |
| 127 function orthogonal_dims(grid::EquidistantGrid, dim) | |
| 128 orth_dims = filter(i -> i != dim, dims(grid)) | |
| 129 if orth_dims == dims(grid) | |
| 130 throw(DomainError(string("dimension ",string(dim)," not matching grid"))) | |
| 131 end | |
| 132 return orth_dims | |
| 133 end | |
| 134 | |
| 135 | |
| 136 """ | |
| 137 boundary_identifiers(::EquidistantGrid) | |
| 138 | |
| 139 Returns a tuple containing the boundary identifiers for the grid, stored as | |
| 140 (CartesianBoundary(1,Lower), | |
| 141 CartesianBoundary(1,Upper), | |
| 142 CartesianBoundary(2,Lower), | |
| 143 ...) | |
| 144 """ | |
| 145 boundary_identifiers(g::EquidistantGrid) = (((ntuple(i->(CartesianBoundary{i,Lower}(),CartesianBoundary{i,Upper}()),ndims(g)))...)...,) | |
| 146 | |
| 147 | |
| 148 """ | |
| 149 boundary_grid(grid::EquidistantGrid, id::CartesianBoundary) | |
| 150 | |
| 151 Creates the lower-dimensional restriciton of `grid` spanned by the dimensions | |
| 152 orthogonal to the boundary specified by `id`. The boundary grid of a 1-dimensional | |
| 153 grid is a zero-dimensional grid. | |
| 154 """ | |
| 155 function boundary_grid(grid::EquidistantGrid, id::CartesianBoundary) | |
| 156 orth_dims = orthogonal_dims(grid, dim(id)) | |
| 157 return restrict(grid, orth_dims) | |
| 158 end | |
| 159 boundary_grid(::EquidistantGrid{1,T},::CartesianBoundary{1}) where T = EquidistantGrid{T}() | |
| 160 | |
| 161 | |
| 162 """ | |
| 163 refine(grid::EquidistantGrid, r::Int) | |
| 164 | |
| 165 Refines `grid` by a factor `r`. The factor is applied to the number of | |
| 166 intervals which is 1 less than the size of the grid. | |
| 167 | |
| 168 See also: [`coarsen`](@ref) | |
| 169 """ | |
| 170 function refine(grid::EquidistantGrid, r::Int) | |
| 171 sz = size(grid) | |
| 172 new_sz = (sz .- 1).*r .+ 1 | |
| 173 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) | |
| 174 end | |
| 175 | |
| 176 | |
| 177 """ | |
| 178 coarsen(grid::EquidistantGrid, r::Int) | |
| 179 | |
| 180 Coarsens `grid` by a factor `r`. The factor is applied to the number of | |
| 181 intervals which is 1 less than the size of the grid. If the number of | |
| 182 intervals are not divisible by `r` an error is raised. | |
| 183 | |
| 184 See also: [`refine`](@ref) | |
| 185 """ | |
| 186 function coarsen(grid::EquidistantGrid, r::Int) | |
| 187 sz = size(grid) | |
| 188 | |
| 189 if !all(n -> (n % r == 0), sz.-1) | |
| 190 throw(DomainError(r, "Size minus 1 must be divisible by the ratio.")) | |
| 191 end | |
| 192 | |
| 193 new_sz = (sz .- 1).÷r .+ 1 | |
| 194 | |
| 195 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) | |
| 196 end |
