Mercurial > repos > public > sbplib_julia
comparison src/Grids/equidistant_grid.jl @ 1143:9275d95e2d90 refactor/grids
Merge with default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 19 Oct 2022 22:36:02 +0200 |
parents | src/Grids/EquidistantGrid.jl@c4ea28d904f5 src/Grids/EquidistantGrid.jl@dfbd62c7eb09 |
children | 31041ef8092a |
comparison
equal
deleted
inserted
replaced
1092:c4ea28d904f5 | 1143:9275d95e2d90 |
---|---|
1 | |
2 """ | |
3 EquidistantGrid{Dim,T<:Real} <: Grid | |
4 | |
5 `Dim`-dimensional equidistant grid with coordinates of type `T`. | |
6 """ | |
7 struct EquidistantGrid{Dim,T<:Real} <: Grid | |
8 size::NTuple{Dim, Int} | |
9 limit_lower::NTuple{Dim, T} | |
10 limit_upper::NTuple{Dim, T} | |
11 | |
12 function EquidistantGrid{Dim,T}(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where {Dim,T} | |
13 if any(size .<= 0) | |
14 throw(DomainError("all components of size must be postive")) | |
15 end | |
16 if any(limit_upper.-limit_lower .<= 0) | |
17 throw(DomainError("all side lengths must be postive")) | |
18 end | |
19 return new{Dim,T}(size, limit_lower, limit_upper) | |
20 end | |
21 end | |
22 | |
23 """ | |
24 EquidistantGrid(size, limit_lower, limit_upper) | |
25 | |
26 Construct an equidistant grid with corners at the coordinates `limit_lower` and | |
27 `limit_upper`. | |
28 | |
29 The length of the domain sides are given by the components of | |
30 `limit_upper-limit_lower`. E.g for a 2D grid with `limit_lower=(-1,0)` and `limit_upper=(1,2)` the domain is defined | |
31 as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative. | |
32 | |
33 The number of equidistantly spaced points in each coordinate direction are given | |
34 by the tuple `size`. | |
35 """ | |
36 function EquidistantGrid(size, limit_lower, limit_upper) | |
37 return EquidistantGrid{length(size), eltype(limit_lower)}(size, limit_lower, limit_upper) | |
38 end | |
39 # TBD: Should it be an AbstractArray? | |
40 | |
41 """ | |
42 EquidistantGrid{T}() | |
43 | |
44 Constructs a 0-dimensional grid. | |
45 """ | |
46 EquidistantGrid{T}() where T = EquidistantGrid{0,T}((),(),()) # Convenience constructor for 0-dim grid | |
47 | |
48 | |
49 """ | |
50 EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) | |
51 | |
52 Convenience constructor for 1D grids. | |
53 """ | |
54 function EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) where T | |
55 return EquidistantGrid((size,),(limit_lower,),(limit_upper,)) | |
56 end | |
57 | |
58 Base.eltype(grid::EquidistantGrid{Dim,T}) where {Dim,T} = T | |
59 | |
60 Base.eachindex(grid::EquidistantGrid) = CartesianIndices(grid.size) | |
61 | |
62 Base.size(g::EquidistantGrid) = g.size | |
63 | |
64 Base.ndims(::EquidistantGrid{Dim}) where Dim = Dim | |
65 | |
66 function Base.getindex(g::EquidistantGrid, I::Vararg{Int}) | |
67 h = spacing(g) | |
68 return g.limit_lower .+ (I.-1).*h | |
69 end | |
70 | |
71 Base.getindex(g::EquidistantGrid, I::CartesianIndex) = g[Tuple(I)...] | |
72 # TBD: Can this method be removed if `EquidistantGrid` is an AbstractArray? | |
73 | |
74 | |
75 | |
76 | |
77 """ | |
78 spacing(grid::EquidistantGrid) | |
79 | |
80 The spacing between grid points. | |
81 """ | |
82 spacing(grid::EquidistantGrid) = (grid.limit_upper.-grid.limit_lower)./(grid.size.-1) | |
83 | |
84 | |
85 """ | |
86 inverse_spacing(grid::EquidistantGrid) | |
87 | |
88 The reciprocal of the spacing between grid points. | |
89 """ | |
90 inverse_spacing(grid::EquidistantGrid) = 1 ./ spacing(grid) | |
91 | |
92 | |
93 """ | |
94 points(grid::EquidistantGrid) | |
95 | |
96 The point of the grid as an array of tuples with the same dimension as the grid. | |
97 The points are stored as [(x1,y1), (x1,y2), … (x1,yn); | |
98 (x2,y1), (x2,y2), … (x2,yn); | |
99 ⋮ ⋮ ⋮ | |
100 (xm,y1), (xm,y2), … (xm,yn)] | |
101 """ | |
102 function points(grid::EquidistantGrid) | |
103 indices = Tuple.(CartesianIndices(grid.size)) | |
104 h = spacing(grid) | |
105 return broadcast(I -> grid.limit_lower .+ (I.-1).*h, indices) | |
106 end | |
107 | |
108 """ | |
109 restrict(::EquidistantGrid, dim) | |
110 | |
111 Pick out given dimensions from the grid and return a grid for them. | |
112 """ | |
113 function restrict(grid::EquidistantGrid, dim) | |
114 size = grid.size[dim] | |
115 limit_lower = grid.limit_lower[dim] | |
116 limit_upper = grid.limit_upper[dim] | |
117 | |
118 return EquidistantGrid(size, limit_lower, limit_upper) | |
119 end | |
120 | |
121 | |
122 """ | |
123 orthogonal_dims(grid::EquidistantGrid,dim) | |
124 | |
125 Returns the dimensions of grid orthogonal to that of dim. | |
126 """ | |
127 function orthogonal_dims(grid::EquidistantGrid, dim) | |
128 orth_dims = filter(i -> i != dim, dims(grid)) | |
129 if orth_dims == dims(grid) | |
130 throw(DomainError(string("dimension ",string(dim)," not matching grid"))) | |
131 end | |
132 return orth_dims | |
133 end | |
134 | |
135 | |
136 """ | |
137 boundary_identifiers(::EquidistantGrid) | |
138 | |
139 Returns a tuple containing the boundary identifiers for the grid, stored as | |
140 (CartesianBoundary(1,Lower), | |
141 CartesianBoundary(1,Upper), | |
142 CartesianBoundary(2,Lower), | |
143 ...) | |
144 """ | |
145 boundary_identifiers(g::EquidistantGrid) = (((ntuple(i->(CartesianBoundary{i,Lower}(),CartesianBoundary{i,Upper}()),ndims(g)))...)...,) | |
146 | |
147 | |
148 """ | |
149 boundary_grid(grid::EquidistantGrid, id::CartesianBoundary) | |
150 | |
151 Creates the lower-dimensional restriciton of `grid` spanned by the dimensions | |
152 orthogonal to the boundary specified by `id`. The boundary grid of a 1-dimensional | |
153 grid is a zero-dimensional grid. | |
154 """ | |
155 function boundary_grid(grid::EquidistantGrid, id::CartesianBoundary) | |
156 orth_dims = orthogonal_dims(grid, dim(id)) | |
157 return restrict(grid, orth_dims) | |
158 end | |
159 boundary_grid(::EquidistantGrid{1,T},::CartesianBoundary{1}) where T = EquidistantGrid{T}() | |
160 | |
161 | |
162 """ | |
163 refine(grid::EquidistantGrid, r::Int) | |
164 | |
165 Refines `grid` by a factor `r`. The factor is applied to the number of | |
166 intervals which is 1 less than the size of the grid. | |
167 | |
168 See also: [`coarsen`](@ref) | |
169 """ | |
170 function refine(grid::EquidistantGrid, r::Int) | |
171 sz = size(grid) | |
172 new_sz = (sz .- 1).*r .+ 1 | |
173 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) | |
174 end | |
175 | |
176 | |
177 """ | |
178 coarsen(grid::EquidistantGrid, r::Int) | |
179 | |
180 Coarsens `grid` by a factor `r`. The factor is applied to the number of | |
181 intervals which is 1 less than the size of the grid. If the number of | |
182 intervals are not divisible by `r` an error is raised. | |
183 | |
184 See also: [`refine`](@ref) | |
185 """ | |
186 function coarsen(grid::EquidistantGrid, r::Int) | |
187 sz = size(grid) | |
188 | |
189 if !all(n -> (n % r == 0), sz.-1) | |
190 throw(DomainError(r, "Size minus 1 must be divisible by the ratio.")) | |
191 end | |
192 | |
193 new_sz = (sz .- 1).÷r .+ 1 | |
194 | |
195 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) | |
196 end |