Mercurial > repos > public > sbplib_julia
comparison src/Grids/manifolds.jl @ 1558:81e97d3bec8c feature/grids/manifolds
Start adding manifolds
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Wed, 24 Apr 2024 13:26:30 +0200 |
| parents | |
| children | 35fe4375b35f |
comparison
equal
deleted
inserted
replaced
| 1556:ec5e7926c37b | 1558:81e97d3bec8c |
|---|---|
| 1 """ | |
| 2 ParameterSpace{D} | |
| 3 | |
| 4 A space of parameters of dimension `D`. Used with `Chart` to indicate which | |
| 5 parameters are valid for that chart. | |
| 6 | |
| 7 Common parameter spaces are created using the functions unit sized spaces | |
| 8 * `unitinterval` | |
| 9 * `unitrectangle` | |
| 10 * `unitbox` | |
| 11 * `unittriangle` | |
| 12 * `unittetrahedron` | |
| 13 * `unithyperbox` | |
| 14 * `unitsimplex` | |
| 15 | |
| 16 See also: [`Interval`](@ref), [`Rectangle`](@ref), [`Box`](@ref), | |
| 17 [`Triangle`](@ref), [`Tetrahedron`](@ref), [`HyperBox`](@ref), | |
| 18 [`Simplex`](@ref), | |
| 19 """ | |
| 20 abstract type ParameterSpace{D} end | |
| 21 | |
| 22 struct HyperBox{T,D} <: ParameterSpace{D} | |
| 23 a::SVector{D,T} | |
| 24 b::SVector{D,T} | |
| 25 end | |
| 26 | |
| 27 function HyperBox(a,b) | |
| 28 T = SVector{length(a)} | |
| 29 HyperBox(convert(T,a), convert(T,b)) | |
| 30 end | |
| 31 | |
| 32 Interval{T} = HyperBox{T,1} | |
| 33 Rectangle{T} = HyperBox{T,2} | |
| 34 Box{T} = HyperBox{T,3} | |
| 35 | |
| 36 limits(box::HyperBox, d) = (box.a[d], box.b[d]) | |
| 37 limits(box::HyperBox) = (box.a, box.b) | |
| 38 | |
| 39 unitinterval(T=Float64) = unithyperbox(T,1) | |
| 40 unitsquare(T=Float64) = unithyperbox(T,2) | |
| 41 unitcube(T=Float64) = unithyperbox(T,3) | |
| 42 unithyperbox(T, D) = HyperBox((@SVector zeros(T,D)), (@SVector ones(T,D))) | |
| 43 unithyperbox(D) = unithyperbox(Float64,D) | |
| 44 | |
| 45 | |
| 46 struct Simplex{T,D} <: ParameterSpace{D} | |
| 47 verticies::NTuple{D,SVector{D,T}} | |
| 48 end | |
| 49 | |
| 50 Triangle{T} = Simplex{T,2} | |
| 51 Tetrahedron{T} = Simplex{T,3} | |
| 52 | |
| 53 unittriangle(T) = unitsimplex(T,2) | |
| 54 unittetrahedron(T) = unitsimplex(T,3) | |
| 55 function unitsimplex(T,D) | |
| 56 z = @SVector zeros(T,D) | |
| 57 unitelement = one(eltype(z)) | |
| 58 verticies = ntuple(i->setindex(z, unitelement, i), 4) | |
| 59 return Simplex(verticies) | |
| 60 end | |
| 61 | |
| 62 | |
| 63 """ | |
| 64 | |
| 65 A parametrized description of a manifold or part of a manifold. | |
| 66 | |
| 67 Should implement a methods for | |
| 68 * `parameterspace` | |
| 69 * `(::Chart)(ξs...)` | |
| 70 | |
| 71 There is a default implementation for `(::Chart{D})(::SVector{D})` | |
| 72 """ | |
| 73 abstract type Chart{D} end | |
| 74 # abstract type Chart{D,R} end | |
| 75 | |
| 76 domain_dim(::Chart{D}) where D = D | |
| 77 # range_dim(::Chart{D,R}) where {D,R} = R | |
| 78 | |
| 79 """ | |
| 80 The parameterspace of a chart | |
| 81 """ | |
| 82 function parameterspace end | |
| 83 | |
| 84 (c::Chart{D})(x̄::SVector{D}) where D = c(x̄...) | |
| 85 | |
| 86 | |
| 87 struct ConcereteChart{PST<:ParameterSpace, MT} | |
| 88 parameterspace::PST | |
| 89 mapping::MT | |
| 90 end | |
| 91 | |
| 92 (c::Chart)(x̄) = c.mapping(x̄) | |
| 93 | |
| 94 | |
| 95 """ | |
| 96 Atlas | |
| 97 | |
| 98 A collection of charts and their connections. | |
| 99 Should implement methods for `charts` and | |
| 100 """ | |
| 101 abstract type Atlas end | |
| 102 | |
| 103 """ | |
| 104 charts(::Atlas) | |
| 105 | |
| 106 The colloction of charts in the atlas. | |
| 107 """ | |
| 108 function charts end | |
| 109 | |
| 110 """ | |
| 111 connections | |
| 112 | |
| 113 TBD: What exactly should this return? | |
| 114 | |
| 115 """ | |
| 116 | |
| 117 struct CartesianAtlas <: Atlas | |
| 118 charts::Matrix{Chart} | |
| 119 end | |
| 120 | |
| 121 charts(a::CartesianAtlas) = a.charts | |
| 122 | |
| 123 struct UnstructuredAtlas <: Atlas | |
| 124 charts::Vector{Chart} | |
| 125 connections | |
| 126 end | |
| 127 | |
| 128 charts(a::UnstructuredAtlas) = a.charts | |
| 129 | |
| 130 | |
| 131 ### | |
| 132 # Geometry | |
| 133 ### | |
| 134 | |
| 135 abstract type Curve end | |
| 136 abstract type Surface end | |
| 137 | |
| 138 | |
| 139 struct Line{PT} <: Curve | |
| 140 p::PT | |
| 141 tangent::PT | |
| 142 end | |
| 143 | |
| 144 (c::Line)(s) = c.p + s*c.tangent | |
| 145 | |
| 146 | |
| 147 struct LineSegment{PT} <: Curve | |
| 148 a::PT | |
| 149 b::PT | |
| 150 end | |
| 151 | |
| 152 (c::LineSegment)(s) = (1-s)*c.a + s*c.b | |
| 153 | |
| 154 | |
| 155 struct Circle{T,PT} <: Curve | |
| 156 c::PT | |
| 157 r::T | |
| 158 end | |
| 159 | |
| 160 (c::Circle)(θ) = c.c + r*@SVector[cos(Θ), sin(Θ)] | |
| 161 | |
| 162 struct TransfiniteInterpolationSurface{T1,T2,T3,T4} <: Surface | |
| 163 c₁::T1 | |
| 164 c₂::T2 | |
| 165 c₃::T3 | |
| 166 c₄::T4 | |
| 167 end | |
| 168 | |
| 169 function (s::TransfiniteInterpolationSurface)(u,v) | |
| 170 c₁, c₂, c₃, c₄ = s.c₁, s.c₂, s.c₃, s.c₄ | |
| 171 P₀₀ = c₁(0) | |
| 172 P₁₀ = c₂(0) | |
| 173 P₁₁ = c₃(0) | |
| 174 P₀₁ = c₄(0) | |
| 175 return (1-v)*c₁(u) + u*c₂(v) + v*c₃(1-u) + (1-u)*c₄(1-v) - ( | |
| 176 (1-u)*(1-v)*P₀₀ + u*(1-v)*P₁₀ + u*v*P₁₁ + (1-u)*v*P₀₁ | |
| 177 ) | |
| 178 end | |
| 179 | |
| 180 function (s::TransfiniteInterpolationSurface)(ξ̄::AbstractArray) | |
| 181 s(ξ̄...) | |
| 182 end | |
| 183 | |
| 184 | |
| 185 function polygon_sides(Ps...) | |
| 186 n = length(Ps) | |
| 187 return [t->line(t,Ps[i],Ps[mod1(i+1,n)]) for i ∈ eachindex(Ps)] | |
| 188 end |
