Mercurial > repos > public > sbplib_julia
comparison wave_eq.jl @ 874:7e9ebd572deb laplace_benchmarks
Add file for wave equation
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 20 Jan 2022 21:51:53 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
873:9929c99754fb | 874:7e9ebd572deb |
---|---|
1 using Sbplib.Grids, Sbplib.SbpOperators, Sbplib.LazyTensors, Sbplib.RegionIndices | |
2 using OrdinaryDiffEq, Plots, Printf, Base.Threads | |
3 | |
4 function apply_tm!(f,u,tm,ind) | |
5 for I in ind | |
6 @inbounds f[I] = (tm*u)[I] | |
7 end | |
8 end | |
9 | |
10 function apply_tm_all_regions!(f,u,tm,rinds) | |
11 apply_tm!(f,u,tm,rinds[1]) | |
12 apply_tm!(f,u,tm,rinds[2]) | |
13 apply_tm!(f,u,tm,rinds[3]) | |
14 end | |
15 | |
16 region_indices(L, N, ::Lower) = map(x->Index{Lower}(x),1:closure_size(L)) | |
17 region_indices(L, N, ::Interior) = map(x->Index{Interior}(x),closure_size(L)+1:N-closure_size(L)) | |
18 region_indices(L, N, ::Upper) = map(x->Index{Upper}(x),N-closure_size(L)+1:N) | |
19 | |
20 function get_region_indices(L,N) | |
21 ind_lower = region_indices(L, N, Lower()) | |
22 ind_interior = region_indices(L, N, Interior()) | |
23 ind_upper = region_indices(L, N, Upper()) | |
24 return (ind_lower, ind_interior, ind_upper) | |
25 end | |
26 | |
27 function wave_eq_sim(alg,T,CFL) | |
28 # Domain | |
29 N = 101 | |
30 g = EquidistantGrid(N,0.,1.) | |
31 dx = min(spacing(g)...) | |
32 | |
33 # Spatial discretization | |
34 Δ = Laplace(g,sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
35 (id_l, id_r) = boundary_identifiers(g) | |
36 SAT_l = boundary_condition(Δ,id_l,NeumannBC()) | |
37 SAT_r = boundary_condition(Δ,id_r,NeumannBC()) | |
38 tm = (Δ + SAT_l + SAT_r) | |
39 | |
40 # RHS function | |
41 rinds = get_region_indices(Δ,N) | |
42 function f(du,u,p,t) | |
43 du[1:N] .= u[N+1:end] | |
44 apply_tm_all_regions!(view(du,N+1:2*N), view(u,1:N), tm, rinds) | |
45 end | |
46 # Initial condition | |
47 sigma = 0.1 | |
48 ic_u = x->1/(sigma*sqrt(2*pi))*exp(-1/2*((x-0.5)^2/sigma^2)) | |
49 ic_u_t = x->0 | |
50 w0 = [evalOn(g,ic_u); | |
51 evalOn(g,ic_u_t)] | |
52 # Setup ODE and solve | |
53 tspan = (0.,T) | |
54 prob = ODEProblem(f,w0,tspan) | |
55 sol = solve(prob, alg, dt=CFL*dx, saveat=0.05) | |
56 | |
57 # Plotting | |
58 x = [x[1] for x in points(g)] | |
59 anim = @animate for i ∈ eachindex(sol.t) | |
60 u_i = sol.u[i] | |
61 plot(x, u_i[1:N], ylims = (0,4), lw=3,ls=:dash,label="",title=@sprintf("u at t = %.3f", sol.t[i])) | |
62 end | |
63 gif(anim, "wave.gif", fps = 15) | |
64 end | |
65 | |
66 wave_eq_sim(CarpenterKennedy2N54(),1.,0.25) | |
67 | |
68 # function boundary_condition(L,id; ) | |
69 # neumann_closure | |
70 # neumann_penalty | |
71 # end | |
72 # | |
73 # function neumann_bc(L,id) | |
74 # e = boundary_restriction.(L,ids) | |
75 # d = normal_derivative(L,ids) | |
76 # return (e'∘d,) | |
77 # end | |
78 # | |
79 # function (closure, penalty) neumann_bc(L,id,g::Function) | |
80 # e = boundary_restriction.(L,ids) | |
81 # d = normal_derivative.(L,ids) | |
82 # return e'∘d | |
83 # end | |
84 # | |
85 # function dirichlet_closure(L,id) | |
86 # e = boundary_restriction.(L,ids) | |
87 # d = normal_derivative.(L,ids) | |
88 # return ... | |
89 # end | |
90 # | |
91 # function SAT(L,ids,BCs) | |
92 # BC = BCs(L,ids[1]) | |
93 # for i = 2:length(ids) | |
94 # BC = BC+ BCs(L,ids[1]) | |
95 # end | |
96 # H_inv = inverse_inner_product(L) | |
97 # return H_inv∘BC | |
98 # end |