Mercurial > repos > public > sbplib_julia
comparison test/Grids/mapped_grid_test.jl @ 1527:69790e9d1652 feature/grids/curvilinear
Remove tests for refine and coarsen
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 09 Apr 2024 15:26:49 +0200 |
parents | 535f32316637 |
children | 5d32ecb98db8 |
comparison
equal
deleted
inserted
replaced
1526:4df668d00d03 | 1527:69790e9d1652 |
---|---|
155 @testset test_boundary_grid(mg, TensorGridBoundary{1, Upper}(), J2) | 155 @testset test_boundary_grid(mg, TensorGridBoundary{1, Upper}(), J2) |
156 @testset test_boundary_grid(mg, TensorGridBoundary{2, Lower}(), J1) | 156 @testset test_boundary_grid(mg, TensorGridBoundary{2, Lower}(), J1) |
157 @testset test_boundary_grid(mg, TensorGridBoundary{2, Upper}(), J1) | 157 @testset test_boundary_grid(mg, TensorGridBoundary{2, Upper}(), J1) |
158 end | 158 end |
159 | 159 |
160 # TBD: Should curvilinear grid support refining and coarsening? | |
161 # This would require keeping the coordinate mapping around which seems burdensome, and might increase compilation time? | |
162 @testset "refine" begin | |
163 @test_broken refine(mg, 1) == mg | |
164 @test_broken refine(mg, 2) == MappedGrid(refine(lg,2), x̄, J) | |
165 @test_broken refine(mg, 3) == MappedGrid(refine(lg,3), x̄, J) | |
166 end | |
167 | |
168 @testset "coarsen" begin | |
169 lg = equidistant_grid((11,11), (0,0), (1,1)) # TODO: Change dims of the grid to be different | |
170 x̄ = map(ξ̄ -> 2ξ̄, lg) | |
171 J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) | |
172 mg = MappedGrid(lg, x̄, J) | |
173 | |
174 @test_broken coarsen(mg, 1) == mg | |
175 @test_broken coarsen(mg, 2) == MappedGrid(coarsen(lg,2), x̄, J) | |
176 | |
177 @test_broken false # @test_throws DomainError(3, "Size minus 1 must be divisible by the ratio.") coarsen(mg, 3) | |
178 end | |
179 end | 160 end |
180 | 161 |
181 @testset "mapped_grid" begin | 162 @testset "mapped_grid" begin |
182 x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] | 163 x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] |
183 J((ξ, η)) = @SMatrix[ | 164 J((ξ, η)) = @SMatrix[ |