Mercurial > repos > public > sbplib_julia
comparison test/Grids/mapped_grid_test.jl @ 1690:5eabe1f560f0 feature/grids/curvilinear
Reorganize nesting of tests for mapped_grid
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 23 Aug 2024 09:45:02 +0200 |
parents | e11b5b6940a2 |
children | 5bf4a35a78c5 |
comparison
equal
deleted
inserted
replaced
1689:e11b5b6940a2 | 1690:5eabe1f560f0 |
---|---|
155 @testset test_boundary_grid(mg, TensorGridBoundary{1, Lower}(), J2) | 155 @testset test_boundary_grid(mg, TensorGridBoundary{1, Lower}(), J2) |
156 @testset test_boundary_grid(mg, TensorGridBoundary{1, Upper}(), J2) | 156 @testset test_boundary_grid(mg, TensorGridBoundary{1, Upper}(), J2) |
157 @testset test_boundary_grid(mg, TensorGridBoundary{2, Lower}(), J1) | 157 @testset test_boundary_grid(mg, TensorGridBoundary{2, Lower}(), J1) |
158 @testset test_boundary_grid(mg, TensorGridBoundary{2, Upper}(), J1) | 158 @testset test_boundary_grid(mg, TensorGridBoundary{2, Upper}(), J1) |
159 end | 159 end |
160 | |
161 @testset "jacobian_determinant" begin | |
162 @test_broken false | |
163 end | |
164 | |
165 @testset "metric_tensor" begin | |
166 @test_broken false | |
167 end | |
168 | |
169 @testset "metric_tensor_inverse" begin | |
170 @test_broken false | |
171 end | |
172 | |
173 | |
174 @testset "min_spacing" begin | |
175 let g = mapped_grid(identity, x->@SMatrix[1], 11) | |
176 @test min_spacing(g) ≈ 0.1 | |
177 end | |
178 | |
179 let g = mapped_grid(x->x+x.^2/2, x->@SMatrix[1 .+ x], 11) | |
180 @test min_spacing(g) ≈ 0.105 | |
181 end | |
182 | |
183 let g = mapped_grid(x->x + x.*(1 .- x)/2, x->@SMatrix[1.5 .- x], 11) | |
184 @test min_spacing(g) ≈ 0.055 | |
185 end | |
186 | |
187 let g = mapped_grid(identity, x->@SMatrix[1 0; 0 1], 11,11) | |
188 @test min_spacing(g) ≈ 0.1 | |
189 end | |
190 | |
191 let g = mapped_grid(identity, x->@SMatrix[1 0; 0 1], 11,21) | |
192 @test min_spacing(g) ≈ 0.05 | |
193 end | |
194 | |
195 skew_grid(a,b, sz...) = mapped_grid(ξ̄->ξ̄[1]*a + ξ̄[2]*b, ξ̄->[a b], sz...) | |
196 | |
197 @testset let a = @SVector[1,0], b = @SVector[1,1]/√2 | |
198 g = skew_grid(a,b,11,11) | |
199 | |
200 @test min_spacing(g) ≈ 0.1*norm(b-a) | |
201 end | |
202 | |
203 @testset let a = @SVector[1,0], b = @SVector[-1,1]/√2 | |
204 g = skew_grid(a,b,11,11) | |
205 | |
206 @test min_spacing(g) ≈ 0.1*norm(a+b) | |
207 end | |
208 | |
209 # Skevt nät | |
210 end | |
211 | |
212 end | 160 end |
213 | 161 |
214 @testset "mapped_grid" begin | 162 @testset "mapped_grid" begin |
215 x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] | 163 x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] |
216 J((ξ, η)) = @SMatrix[ | 164 J((ξ, η)) = @SMatrix[ |
221 @test mg isa MappedGrid{SVector{2,Float64}, 2} | 169 @test mg isa MappedGrid{SVector{2,Float64}, 2} |
222 | 170 |
223 lg = equidistant_grid((0,0), (1,1), 10, 11) | 171 lg = equidistant_grid((0,0), (1,1), 10, 11) |
224 @test logicalgrid(mg) == lg | 172 @test logicalgrid(mg) == lg |
225 @test collect(mg) == map(x̄, lg) | 173 @test collect(mg) == map(x̄, lg) |
226 | 174 end |
227 | 175 |
228 @testset "normal" begin | 176 @testset "jacobian_determinant" begin |
229 @test normal(mg, CartesianBoundary{1,Lower}()) == fill(@SVector[-1,0], 11) | 177 @test_broken false |
230 @test normal(mg, CartesianBoundary{1,Upper}()) == fill(@SVector[1,0], 11) | 178 end |
231 @test normal(mg, CartesianBoundary{2,Lower}()) == fill(@SVector[0,-1], 10) | 179 |
232 @test normal(mg, CartesianBoundary{2,Upper}()) ≈ map(boundary_grid(mg,CartesianBoundary{2,Upper}())|>logicalgrid) do ξ̄ | 180 @testset "metric_tensor" begin |
233 α = 1-2ξ̄[1] | 181 @test_broken false |
234 @SVector[α,1]/√(α^2 + 1) | 182 end |
235 end | 183 |
236 | 184 @testset "metric_tensor_inverse" begin |
237 | 185 @test_broken false |
238 x̄((ξ, η)) = @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] | 186 end |
239 J((ξ, η)) = @SMatrix[ | 187 |
240 2 1-2η; | 188 @testset "min_spacing" begin |
241 (2+η)*ξ 3+1/2*ξ^2; | 189 let g = mapped_grid(identity, x->@SMatrix[1], 11) |
242 ] | 190 @test min_spacing(g) ≈ 0.1 |
243 | 191 end |
244 g = mapped_grid(x̄,J,21,14) | 192 |
245 g = mapped_grid(x̄,J,3,4) | 193 let g = mapped_grid(x->x+x.^2/2, x->@SMatrix[1 .+ x], 11) |
246 | 194 @test min_spacing(g) ≈ 0.105 |
247 unit(v) = v/norm(v) | 195 end |
248 @testset let bId = CartesianBoundary{1,Lower}() | 196 |
249 lbg = boundary_grid(logicalgrid(g), bId) | 197 let g = mapped_grid(x->x + x.*(1 .- x)/2, x->@SMatrix[1.5 .- x], 11) |
250 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | 198 @test min_spacing(g) ≈ 0.055 |
251 -unit(@SVector[1/2, η/3-1/6]) | 199 end |
252 end | 200 |
253 end | 201 let g = mapped_grid(identity, x->@SMatrix[1 0; 0 1], 11,11) |
254 | 202 @test min_spacing(g) ≈ 0.1 |
255 @testset let bId = CartesianBoundary{1,Upper}() | 203 end |
256 lbg = boundary_grid(logicalgrid(g), bId) | 204 |
257 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | 205 let g = mapped_grid(identity, x->@SMatrix[1 0; 0 1], 11,21) |
258 unit(@SVector[7/2, 2η-1]/(5 + 3η + 2η^2)) | 206 @test min_spacing(g) ≈ 0.05 |
259 end | 207 end |
260 end | 208 |
261 | 209 skew_grid(a,b, sz...) = mapped_grid(ξ̄->ξ̄[1]*a + ξ̄[2]*b, ξ̄->[a b], sz...) |
262 @testset let bId = CartesianBoundary{2,Lower}() | 210 |
263 lbg = boundary_grid(logicalgrid(g), bId) | 211 @testset let a = @SVector[1,0], b = @SVector[1,1]/√2 |
264 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | 212 g = skew_grid(a,b,11,11) |
265 -unit(@SVector[-2ξ, 2]/(6 + ξ^2 - 2ξ)) | 213 |
266 end | 214 @test min_spacing(g) ≈ 0.1*norm(b-a) |
267 end | 215 end |
268 | 216 |
269 @testset let bId = CartesianBoundary{2,Upper}() | 217 @testset let a = @SVector[1,0], b = @SVector[-1,1]/√2 |
270 lbg = boundary_grid(logicalgrid(g), bId) | 218 g = skew_grid(a,b,11,11) |
271 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | 219 |
272 unit(@SVector[-3ξ, 2]/(6 + ξ^2 + 3ξ)) | 220 @test min_spacing(g) ≈ 0.1*norm(a+b) |
273 end | 221 end |
274 end | 222 end |
275 end | 223 |
276 end | 224 @testset "normal" begin |
277 | 225 x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] |
278 # TODO: Reorganize tests to not be nested. | 226 J((ξ, η)) = @SMatrix[ |
279 # Want to ues "mapped_grid" to contruct tests for some of the differential geometry methods | 227 1 0; |
228 η*(2ξ-1) 1+ξ*(ξ-1); | |
229 ] | |
230 g = mapped_grid(x̄, J, 10, 11) | |
231 | |
232 @test normal(g, CartesianBoundary{1,Lower}()) == fill(@SVector[-1,0], 11) | |
233 @test normal(g, CartesianBoundary{1,Upper}()) == fill(@SVector[1,0], 11) | |
234 @test normal(g, CartesianBoundary{2,Lower}()) == fill(@SVector[0,-1], 10) | |
235 @test normal(g, CartesianBoundary{2,Upper}()) ≈ map(boundary_grid(g,CartesianBoundary{2,Upper}())|>logicalgrid) do ξ̄ | |
236 α = 1-2ξ̄[1] | |
237 @SVector[α,1]/√(α^2 + 1) | |
238 end | |
239 | |
240 x̄((ξ, η)) = @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] | |
241 J((ξ, η)) = @SMatrix[ | |
242 2 1-2η; | |
243 (2+η)*ξ 3+1/2*ξ^2; | |
244 ] | |
245 | |
246 g = mapped_grid(x̄,J,5,4) | |
247 | |
248 unit(v) = v/norm(v) | |
249 @testset let bId = CartesianBoundary{1,Lower}() | |
250 lbg = boundary_grid(logicalgrid(g), bId) | |
251 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | |
252 -unit(@SVector[1/2, η/3-1/6]) | |
253 end | |
254 end | |
255 | |
256 @testset let bId = CartesianBoundary{1,Upper}() | |
257 lbg = boundary_grid(logicalgrid(g), bId) | |
258 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | |
259 unit(@SVector[7/2, 2η-1]/(5 + 3η + 2η^2)) | |
260 end | |
261 end | |
262 | |
263 @testset let bId = CartesianBoundary{2,Lower}() | |
264 lbg = boundary_grid(logicalgrid(g), bId) | |
265 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | |
266 -unit(@SVector[-2ξ, 2]/(6 + ξ^2 - 2ξ)) | |
267 end | |
268 end | |
269 | |
270 @testset let bId = CartesianBoundary{2,Upper}() | |
271 lbg = boundary_grid(logicalgrid(g), bId) | |
272 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | |
273 unit(@SVector[-3ξ, 2]/(6 + ξ^2 + 3ξ)) | |
274 end | |
275 end | |
276 end |