Mercurial > repos > public > sbplib_julia
comparison src/LazyTensors/lazy_tensor_operations.jl @ 1023:52f07c77299d refactor/sbpoperators/inflation
Merge refactor/lazy_tensors
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 21 Mar 2022 09:51:07 +0100 |
parents | bbbc31953367 f7a718bcb4da |
children | f857057e61e6 |
comparison
equal
deleted
inserted
replaced
1022:bbbc31953367 | 1023:52f07c77299d |
---|---|
1 """ | 1 """ |
2 LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R} | 2 LazyTensorApplication{T,R,D} <: LazyArray{T,R} |
3 | 3 |
4 Struct for lazy application of a TensorMapping. Created using `*`. | 4 Struct for lazy application of a LazyTensor. Created using `*`. |
5 | 5 |
6 Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`. | 6 Allows the result of a `LazyTensor` applied to a vector to be treated as an `AbstractArray`. |
7 With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`. | 7 With a mapping `m` and a vector `v` the LazyTensorApplication object can be created by `m*v`. |
8 The actual result will be calcualted when indexing into `m*v`. | 8 The actual result will be calcualted when indexing into `m*v`. |
9 """ | 9 """ |
10 struct LazyTensorMappingApplication{T,R,D, TM<:TensorMapping{<:Any,R,D}, AA<:AbstractArray{<:Any,D}} <: LazyArray{T,R} | 10 struct LazyTensorApplication{T,R,D, TM<:LazyTensor{<:Any,R,D}, AA<:AbstractArray{<:Any,D}} <: LazyArray{T,R} |
11 t::TM | 11 t::TM |
12 o::AA | 12 o::AA |
13 | 13 |
14 function LazyTensorMappingApplication(t::TensorMapping{<:Any,R,D}, o::AbstractArray{<:Any,D}) where {R,D} | 14 function LazyTensorApplication(t::LazyTensor{<:Any,R,D}, o::AbstractArray{<:Any,D}) where {R,D} |
15 @boundscheck check_domain_size(t, size(o)) | |
15 I = ntuple(i->1, range_dim(t)) | 16 I = ntuple(i->1, range_dim(t)) |
16 T = typeof(apply(t,o,I...)) | 17 T = typeof(apply(t,o,I...)) |
17 return new{T,R,D,typeof(t), typeof(o)}(t,o) | 18 return new{T,R,D,typeof(t), typeof(o)}(t,o) |
18 end | 19 end |
19 end | 20 end |
20 # TODO: Do boundschecking on creation! | 21 |
21 | 22 function Base.getindex(ta::LazyTensorApplication{T,R}, I::Vararg{Any,R}) where {T,R} |
22 Base.getindex(ta::LazyTensorMappingApplication{T,R}, I::Vararg{Any,R}) where {T,R} = apply(ta.t, ta.o, I...) | 23 @boundscheck checkbounds(ta, Int.(I)...) |
23 Base.getindex(ta::LazyTensorMappingApplication{T,1}, I::CartesianIndex{1}) where {T} = apply(ta.t, ta.o, I.I...) # Would otherwise be caught in the previous method. | 24 return apply(ta.t, ta.o, I...) |
24 Base.size(ta::LazyTensorMappingApplication) = range_size(ta.t) | 25 end |
25 # TODO: What else is needed to implement the AbstractArray interface? | 26 Base.getindex(ta::LazyTensorApplication{T,1} where T, I::CartesianIndex{1}) = ta[Tuple(I)...] # Would otherwise be caught in the previous method. |
26 | 27 Base.size(ta::LazyTensorApplication) = range_size(ta.t) |
27 Base.:*(a::TensorMapping, v::AbstractArray) = LazyTensorMappingApplication(a,v) | 28 |
28 Base.:*(a::TensorMapping, b::TensorMapping) = throw(MethodError(Base.:*,(a,b))) | 29 |
29 Base.:*(a::TensorMapping, args::Union{TensorMapping, AbstractArray}...) = foldr(*,(a,args...)) | 30 """ |
30 | 31 LazyTensorTranspose{T,R,D} <: LazyTensor{T,D,R} |
31 # # We need the associativity to be a→b→c = a→(b→c), which is the case for '→' | 32 |
32 # # Should we overload some other infix binary opesrator? | 33 Struct for lazy transpose of a LazyTensor. |
33 # →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) | |
34 # TODO: We need to be really careful about good error messages. | |
35 # For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)? | |
36 | |
37 """ | |
38 LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} | |
39 | |
40 Struct for lazy transpose of a TensorMapping. | |
41 | 34 |
42 If a mapping implements the the `apply_transpose` method this allows working with | 35 If a mapping implements the the `apply_transpose` method this allows working with |
43 the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling | 36 the transpose of mapping `m` by using `m'`. `m'` will work as a regular LazyTensor lazily calling |
44 the appropriate methods of `m`. | 37 the appropriate methods of `m`. |
45 """ | 38 """ |
46 struct LazyTensorMappingTranspose{T,R,D, TM<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R} | 39 struct LazyTensorTranspose{T,R,D, TM<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R} |
47 tm::TM | 40 tm::TM |
48 end | 41 end |
49 | 42 |
50 # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? | 43 # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? |
51 # Jonatan 2020-09-25: Is the problem that you can take the transpose of any TensorMapping even if it doesn't implement `apply_transpose`? | 44 # Jonatan 2020-09-25: Is the problem that you can take the transpose of any LazyTensor even if it doesn't implement `apply_transpose`? |
52 Base.adjoint(tm::TensorMapping) = LazyTensorMappingTranspose(tm) | 45 Base.adjoint(tm::LazyTensor) = LazyTensorTranspose(tm) |
53 Base.adjoint(tmt::LazyTensorMappingTranspose) = tmt.tm | 46 Base.adjoint(tmt::LazyTensorTranspose) = tmt.tm |
54 | 47 |
55 apply(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...) | 48 apply(tmt::LazyTensorTranspose{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...) |
56 apply_transpose(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmt.tm, v, I...) | 49 apply_transpose(tmt::LazyTensorTranspose{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmt.tm, v, I...) |
57 | 50 |
58 range_size(tmt::LazyTensorMappingTranspose) = domain_size(tmt.tm) | 51 range_size(tmt::LazyTensorTranspose) = domain_size(tmt.tm) |
59 domain_size(tmt::LazyTensorMappingTranspose) = range_size(tmt.tm) | 52 domain_size(tmt::LazyTensorTranspose) = range_size(tmt.tm) |
60 | 53 |
61 | 54 |
62 struct LazyTensorMappingBinaryOperation{Op,T,R,D,T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R} | 55 struct LazyTensorBinaryOperation{Op,T,R,D,T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R} |
63 tm1::T1 | 56 tm1::T1 |
64 tm2::T2 | 57 tm2::T2 |
65 | 58 |
66 @inline function LazyTensorMappingBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} | 59 function LazyTensorBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} |
60 @boundscheck check_domain_size(tm2, domain_size(tm1)) | |
61 @boundscheck check_range_size(tm2, range_size(tm1)) | |
67 return new{Op,T,R,D,T1,T2}(tm1,tm2) | 62 return new{Op,T,R,D,T1,T2}(tm1,tm2) |
68 end | 63 end |
69 end | 64 end |
70 # TODO: Boundschecking in constructor. | 65 |
71 | 66 LazyTensorBinaryOperation{Op}(s,t) where Op = LazyTensorBinaryOperation{Op,eltype(s), range_dim(s), domain_dim(s)}(s,t) |
72 apply(tmBinOp::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...) | 67 |
73 apply(tmBinOp::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...) | 68 apply(tmBinOp::LazyTensorBinaryOperation{:+,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...) |
74 | 69 apply(tmBinOp::LazyTensorBinaryOperation{:-,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...) |
75 range_size(tmBinOp::LazyTensorMappingBinaryOperation) = range_size(tmBinOp.tm1) | 70 |
76 domain_size(tmBinOp::LazyTensorMappingBinaryOperation) = domain_size(tmBinOp.tm1) | 71 range_size(tmBinOp::LazyTensorBinaryOperation) = range_size(tmBinOp.tm1) |
77 | 72 domain_size(tmBinOp::LazyTensorBinaryOperation) = domain_size(tmBinOp.tm1) |
78 Base.:+(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:+,T,R,D}(tm1,tm2) | 73 |
79 Base.:-(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:-,T,R,D}(tm1,tm2) | 74 |
80 | 75 """ |
81 """ | 76 LazyTensorComposition{T,R,K,D} |
82 TensorMappingComposition{T,R,K,D} | 77 |
83 | 78 Lazily compose two `LazyTensor`s, so that they can be handled as a single `LazyTensor`. |
84 Lazily compose two `TensorMapping`s, so that they can be handled as a single `TensorMapping`. | 79 """ |
85 """ | 80 struct LazyTensorComposition{T,R,K,D, TM1<:LazyTensor{T,R,K}, TM2<:LazyTensor{T,K,D}} <: LazyTensor{T,R,D} |
86 struct TensorMappingComposition{T,R,K,D, TM1<:TensorMapping{T,R,K}, TM2<:TensorMapping{T,K,D}} <: TensorMapping{T,R,D} | |
87 t1::TM1 | 81 t1::TM1 |
88 t2::TM2 | 82 t2::TM2 |
89 | 83 |
90 @inline function TensorMappingComposition(t1::TensorMapping{T,R,K}, t2::TensorMapping{T,K,D}) where {T,R,K,D} | 84 function LazyTensorComposition(t1::LazyTensor{T,R,K}, t2::LazyTensor{T,K,D}) where {T,R,K,D} |
91 @boundscheck check_domain_size(t1, range_size(t2)) | 85 @boundscheck check_domain_size(t1, range_size(t2)) |
92 return new{T,R,K,D, typeof(t1), typeof(t2)}(t1,t2) | 86 return new{T,R,K,D, typeof(t1), typeof(t2)}(t1,t2) |
93 end | 87 end |
94 end | 88 end |
95 | 89 |
96 range_size(tm::TensorMappingComposition) = range_size(tm.t1) | 90 range_size(tm::LazyTensorComposition) = range_size(tm.t1) |
97 domain_size(tm::TensorMappingComposition) = domain_size(tm.t2) | 91 domain_size(tm::LazyTensorComposition) = domain_size(tm.t2) |
98 | 92 |
99 function apply(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,K,D} | 93 function apply(c::LazyTensorComposition{T,R,K,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,K,D} |
100 apply(c.t1, c.t2*v, I...) | 94 apply(c.t1, c.t2*v, I...) |
101 end | 95 end |
102 | 96 |
103 function apply_transpose(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,K,D} | 97 function apply_transpose(c::LazyTensorComposition{T,R,K,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,K,D} |
104 apply_transpose(c.t2, c.t1'*v, I...) | 98 apply_transpose(c.t2, c.t1'*v, I...) |
105 end | 99 end |
106 | 100 |
107 Base.@propagate_inbounds Base.:∘(s::TensorMapping, t::TensorMapping) = TensorMappingComposition(s,t) | 101 |
108 | 102 """ |
109 """ | 103 LazyTensorComposition(tm, tmi::IdentityTensor) |
110 LazyLinearMap{T,R,D,...}(A, range_indicies, domain_indicies) | 104 LazyTensorComposition(tmi::IdentityTensor, tm) |
111 | 105 |
112 TensorMapping defined by the AbstractArray A. `range_indicies` and `domain_indicies` define which indicies of A should | 106 Composes a `Tensormapping` `tm` with an `IdentityTensor` `tmi`, by returning `tm` |
113 be considerd the range and domain of the TensorMapping. Each set of indices must be ordered in ascending order. | 107 """ |
114 | 108 function LazyTensorComposition(tm::LazyTensor{T,R,D}, tmi::IdentityTensor{T,D}) where {T,R,D} |
115 For instance, if A is a m x n matrix, and range_size = (1,), domain_size = (2,), then the LazyLinearMap performs the | |
116 standard matrix-vector product on vectors of size n. | |
117 """ | |
118 struct LazyLinearMap{T,R,D, RD, AA<:AbstractArray{T,RD}} <: TensorMapping{T,R,D} | |
119 A::AA | |
120 range_indicies::NTuple{R,Int} | |
121 domain_indicies::NTuple{D,Int} | |
122 | |
123 function LazyLinearMap(A::AA, range_indicies::NTuple{R,Int}, domain_indicies::NTuple{D,Int}) where {T,R,D, RD, AA<:AbstractArray{T,RD}} | |
124 if !issorted(range_indicies) || !issorted(domain_indicies) | |
125 throw(DomainError("range_indicies and domain_indicies must be sorted in ascending order")) | |
126 end | |
127 | |
128 return new{T,R,D,RD,AA}(A,range_indicies,domain_indicies) | |
129 end | |
130 end | |
131 | |
132 range_size(llm::LazyLinearMap) = size(llm.A)[[llm.range_indicies...]] | |
133 domain_size(llm::LazyLinearMap) = size(llm.A)[[llm.domain_indicies...]] | |
134 | |
135 function apply(llm::LazyLinearMap{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} | |
136 view_index = ntuple(i->:,ndims(llm.A)) | |
137 for i ∈ 1:R | |
138 view_index = Base.setindex(view_index, Int(I[i]), llm.range_indicies[i]) | |
139 end | |
140 A_view = @view llm.A[view_index...] | |
141 return sum(A_view.*v) | |
142 end | |
143 | |
144 function apply_transpose(llm::LazyLinearMap{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} | |
145 apply(LazyLinearMap(llm.A, llm.domain_indicies, llm.range_indicies), v, I...) | |
146 end | |
147 | |
148 | |
149 """ | |
150 IdentityMapping{T,D} <: TensorMapping{T,D,D} | |
151 | |
152 The lazy identity TensorMapping for a given size. Usefull for building up higher dimensional tensor mappings from lower | |
153 dimensional ones through outer products. Also used in the Implementation for InflatedTensorMapping. | |
154 """ | |
155 struct IdentityMapping{T,D} <: TensorMapping{T,D,D} | |
156 size::NTuple{D,Int} | |
157 end | |
158 | |
159 IdentityMapping{T}(size::NTuple{D,Int}) where {T,D} = IdentityMapping{T,D}(size) | |
160 IdentityMapping{T}(size::Vararg{Int,D}) where {T,D} = IdentityMapping{T,D}(size) | |
161 IdentityMapping(size::Vararg{Int,D}) where D = IdentityMapping{Float64,D}(size) | |
162 | |
163 range_size(tmi::IdentityMapping) = tmi.size | |
164 domain_size(tmi::IdentityMapping) = tmi.size | |
165 | |
166 apply(tmi::IdentityMapping{T,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,D}) where {T,D} = v[I...] | |
167 apply_transpose(tmi::IdentityMapping{T,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,D}) where {T,D} = v[I...] | |
168 | |
169 """ | |
170 Base.:∘(tm, tmi) | |
171 Base.:∘(tmi, tm) | |
172 | |
173 Composes a `Tensormapping` `tm` with an `IdentityMapping` `tmi`, by returning `tm` | |
174 """ | |
175 @inline function Base.:∘(tm::TensorMapping{T,R,D}, tmi::IdentityMapping{T,D}) where {T,R,D} | |
176 @boundscheck check_domain_size(tm, range_size(tmi)) | 109 @boundscheck check_domain_size(tm, range_size(tmi)) |
177 return tm | 110 return tm |
178 end | 111 end |
179 | 112 |
180 @inline function Base.:∘(tmi::IdentityMapping{T,R}, tm::TensorMapping{T,R,D}) where {T,R,D} | 113 function LazyTensorComposition(tmi::IdentityTensor{T,R}, tm::LazyTensor{T,R,D}) where {T,R,D} |
181 @boundscheck check_domain_size(tmi, range_size(tm)) | 114 @boundscheck check_domain_size(tmi, range_size(tm)) |
182 return tm | 115 return tm |
183 end | 116 end |
184 # Specialization for the case where tm is an IdentityMapping. Required to resolve ambiguity. | 117 # Specialization for the case where tm is an IdentityTensor. Required to resolve ambiguity. |
185 @inline function Base.:∘(tm::IdentityMapping{T,D}, tmi::IdentityMapping{T,D}) where {T,D} | 118 function LazyTensorComposition(tm::IdentityTensor{T,D}, tmi::IdentityTensor{T,D}) where {T,D} |
186 @boundscheck check_domain_size(tm, range_size(tmi)) | 119 @boundscheck check_domain_size(tm, range_size(tmi)) |
187 return tmi | 120 return tmi |
188 end | 121 end |
189 | 122 |
190 | 123 |
191 """ | 124 """ |
192 InflatedTensorMapping{T,R,D} <: TensorMapping{T,R,D} | 125 InflatedLazyTensor{T,R,D} <: LazyTensor{T,R,D} |
193 | 126 |
194 An inflated `TensorMapping` with dimensions added before and afer its actual dimensions. | 127 An inflated `LazyTensor` with dimensions added before and afer its actual dimensions. |
195 """ | 128 """ |
196 struct InflatedTensorMapping{T,R,D,D_before,R_middle,D_middle,D_after, TM<:TensorMapping{T,R_middle,D_middle}} <: TensorMapping{T,R,D} | 129 struct InflatedLazyTensor{T,R,D,D_before,R_middle,D_middle,D_after, TM<:LazyTensor{T,R_middle,D_middle}} <: LazyTensor{T,R,D} |
197 before::IdentityMapping{T,D_before} | 130 before::IdentityTensor{T,D_before} |
198 tm::TM | 131 tm::TM |
199 after::IdentityMapping{T,D_after} | 132 after::IdentityTensor{T,D_after} |
200 | 133 |
201 function InflatedTensorMapping(before, tm::TensorMapping{T}, after) where T | 134 function InflatedLazyTensor(before, tm::LazyTensor{T}, after) where T |
202 R_before = range_dim(before) | 135 R_before = range_dim(before) |
203 R_middle = range_dim(tm) | 136 R_middle = range_dim(tm) |
204 R_after = range_dim(after) | 137 R_after = range_dim(after) |
205 R = R_before+R_middle+R_after | 138 R = R_before+R_middle+R_after |
206 | 139 |
209 D_after = domain_dim(after) | 142 D_after = domain_dim(after) |
210 D = D_before+D_middle+D_after | 143 D = D_before+D_middle+D_after |
211 return new{T,R,D,D_before,R_middle,D_middle,D_after, typeof(tm)}(before, tm, after) | 144 return new{T,R,D,D_before,R_middle,D_middle,D_after, typeof(tm)}(before, tm, after) |
212 end | 145 end |
213 end | 146 end |
214 """ | 147 |
215 InflatedTensorMapping(before, tm, after) | 148 """ |
216 InflatedTensorMapping(before,tm) | 149 InflatedLazyTensor(before, tm, after) |
217 InflatedTensorMapping(tm,after) | 150 InflatedLazyTensor(before,tm) |
218 | 151 InflatedLazyTensor(tm,after) |
219 The outer product of `before`, `tm` and `after`, where `before` and `after` are `IdentityMapping`s. | 152 |
220 | 153 The outer product of `before`, `tm` and `after`, where `before` and `after` are `IdentityTensor`s. |
221 If one of `before` or `after` is left out, a 0-dimensional `IdentityMapping` is used as the default value. | 154 |
222 | 155 If one of `before` or `after` is left out, a 0-dimensional `IdentityTensor` is used as the default value. |
223 If `tm` already is an `InflatedTensorMapping`, `before` and `after` will be extended instead of | 156 |
224 creating a nested `InflatedTensorMapping`. | 157 If `tm` already is an `InflatedLazyTensor`, `before` and `after` will be extended instead of |
225 """ | 158 creating a nested `InflatedLazyTensor`. |
226 InflatedTensorMapping(::IdentityMapping, ::TensorMapping, ::IdentityMapping) | 159 """ |
227 | 160 InflatedLazyTensor(::IdentityTensor, ::LazyTensor, ::IdentityTensor) |
228 function InflatedTensorMapping(before, itm::InflatedTensorMapping, after) | 161 |
229 return InflatedTensorMapping( | 162 function InflatedLazyTensor(before, itm::InflatedLazyTensor, after) |
230 IdentityMapping(before.size..., itm.before.size...), | 163 return InflatedLazyTensor( |
164 IdentityTensor(before.size..., itm.before.size...), | |
231 itm.tm, | 165 itm.tm, |
232 IdentityMapping(itm.after.size..., after.size...), | 166 IdentityTensor(itm.after.size..., after.size...), |
233 ) | 167 ) |
234 end | 168 end |
235 | 169 |
236 InflatedTensorMapping(before::IdentityMapping, tm::TensorMapping{T}) where T = InflatedTensorMapping(before,tm,IdentityMapping{T}()) | 170 InflatedLazyTensor(before::IdentityTensor, tm::LazyTensor{T}) where T = InflatedLazyTensor(before,tm,IdentityTensor{T}()) |
237 InflatedTensorMapping(tm::TensorMapping{T}, after::IdentityMapping) where T = InflatedTensorMapping(IdentityMapping{T}(),tm,after) | 171 InflatedLazyTensor(tm::LazyTensor{T}, after::IdentityTensor) where T = InflatedLazyTensor(IdentityTensor{T}(),tm,after) |
238 # Resolve ambiguity between the two previous methods | 172 # Resolve ambiguity between the two previous methods |
239 InflatedTensorMapping(I1::IdentityMapping{T}, I2::IdentityMapping{T}) where T = InflatedTensorMapping(I1,I2,IdentityMapping{T}()) | 173 InflatedLazyTensor(I1::IdentityTensor{T}, I2::IdentityTensor{T}) where T = InflatedLazyTensor(I1,I2,IdentityTensor{T}()) |
240 | 174 |
241 # TODO: Implement some pretty printing in terms of ⊗. E.g InflatedTensorMapping(I(3),B,I(2)) -> I(3)⊗B⊗I(2) | 175 # TODO: Implement some pretty printing in terms of ⊗. E.g InflatedLazyTensor(I(3),B,I(2)) -> I(3)⊗B⊗I(2) |
242 | 176 |
243 function range_size(itm::InflatedTensorMapping) | 177 function range_size(itm::InflatedLazyTensor) |
244 return flatten_tuple( | 178 return flatten_tuple( |
245 range_size(itm.before), | 179 range_size(itm.before), |
246 range_size(itm.tm), | 180 range_size(itm.tm), |
247 range_size(itm.after), | 181 range_size(itm.after), |
248 ) | 182 ) |
249 end | 183 end |
250 | 184 |
251 function domain_size(itm::InflatedTensorMapping) | 185 function domain_size(itm::InflatedLazyTensor) |
252 return flatten_tuple( | 186 return flatten_tuple( |
253 domain_size(itm.before), | 187 domain_size(itm.before), |
254 domain_size(itm.tm), | 188 domain_size(itm.tm), |
255 domain_size(itm.after), | 189 domain_size(itm.after), |
256 ) | 190 ) |
257 end | 191 end |
258 | 192 |
259 function apply(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} | 193 function apply(itm::InflatedLazyTensor{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} |
260 dim_before = range_dim(itm.before) | 194 dim_before = range_dim(itm.before) |
261 dim_domain = domain_dim(itm.tm) | 195 dim_domain = domain_dim(itm.tm) |
262 dim_range = range_dim(itm.tm) | 196 dim_range = range_dim(itm.tm) |
263 dim_after = range_dim(itm.after) | 197 dim_after = range_dim(itm.after) |
264 | 198 |
266 | 200 |
267 v_inner = view(v, view_index...) | 201 v_inner = view(v, view_index...) |
268 return apply(itm.tm, v_inner, inner_index...) | 202 return apply(itm.tm, v_inner, inner_index...) |
269 end | 203 end |
270 | 204 |
271 function apply_transpose(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} | 205 function apply_transpose(itm::InflatedLazyTensor{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} |
272 dim_before = range_dim(itm.before) | 206 dim_before = range_dim(itm.before) |
273 dim_domain = domain_dim(itm.tm) | 207 dim_domain = domain_dim(itm.tm) |
274 dim_range = range_dim(itm.tm) | 208 dim_range = range_dim(itm.tm) |
275 dim_after = range_dim(itm.after) | 209 dim_after = range_dim(itm.after) |
276 | 210 |
279 v_inner = view(v, view_index...) | 213 v_inner = view(v, view_index...) |
280 return apply_transpose(itm.tm, v_inner, inner_index...) | 214 return apply_transpose(itm.tm, v_inner, inner_index...) |
281 end | 215 end |
282 | 216 |
283 | 217 |
284 """ | |
285 split_index(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...) | |
286 | |
287 Splits the multi-index `I` into two parts. One part which is expected to be | |
288 used as a view, and one which is expected to be used as an index. | |
289 Eg. | |
290 ``` | |
291 split_index(Val(1),Val(3),Val(2),Val(1),(1,2,3,4)) -> (1,:,:,:,4), (2,3) | |
292 ``` | |
293 | |
294 `dim_view` controls how many colons are in the view, and `dim_index` controls | |
295 how many elements are extracted from the middle. | |
296 `dim_before` and `dim_after` decides the length of the index parts before and after the colons in the view index. | |
297 | |
298 Arguments should satisfy `length(I) == dim_before+B_domain+dim_after`. | |
299 | |
300 The returned values satisfy | |
301 * `length(view_index) == dim_before + dim_view + dim_after` | |
302 * `length(I_middle) == dim_index` | |
303 """ | |
304 function split_index(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...) where {dim_before,dim_view, dim_index,dim_after} | |
305 I_before, I_middle, I_after = split_tuple(I, Val(dim_before), Val(dim_index)) | |
306 | |
307 view_index = (I_before..., ntuple((i)->:, dim_view)..., I_after...) | |
308 | |
309 return view_index, I_middle | |
310 end | |
311 | |
312 # TODO: Can this be replaced by something more elegant while still being type stable? 2020-10-21 | |
313 # See: | |
314 # https://github.com/JuliaLang/julia/issues/34884 | |
315 # https://github.com/JuliaLang/julia/issues/30386 | |
316 """ | |
317 slice_tuple(t, Val(l), Val(u)) | |
318 | |
319 Get a slice of a tuple in a type stable way. | |
320 Equivalent to `t[l:u]` but type stable. | |
321 """ | |
322 function slice_tuple(t,::Val{L},::Val{U}) where {L,U} | |
323 return ntuple(i->t[i+L-1], U-L+1) | |
324 end | |
325 | |
326 """ | |
327 split_tuple(t::Tuple{...}, ::Val{M}) where {N,M} | |
328 | |
329 Split the tuple `t` into two parts. the first part is `M` long. | |
330 E.g | |
331 ```julia | |
332 split_tuple((1,2,3,4),Val(3)) -> (1,2,3), (4,) | |
333 ``` | |
334 """ | |
335 function split_tuple(t::NTuple{N,Any},::Val{M}) where {N,M} | |
336 return slice_tuple(t,Val(1), Val(M)), slice_tuple(t,Val(M+1), Val(N)) | |
337 end | |
338 | |
339 """ | |
340 split_tuple(t::Tuple{...},::Val{M},::Val{K}) where {N,M,K} | |
341 | |
342 Same as `split_tuple(t::NTuple{N},::Val{M})` but splits the tuple in three parts. With the first | |
343 two parts having lenght `M` and `K`. | |
344 """ | |
345 function split_tuple(t::NTuple{N,Any},::Val{M},::Val{K}) where {N,M,K} | |
346 p1, tail = split_tuple(t, Val(M)) | |
347 p2, p3 = split_tuple(tail, Val(K)) | |
348 return p1,p2,p3 | |
349 end | |
350 | |
351 | |
352 """ | |
353 flatten_tuple(t) | |
354 | |
355 Takes a nested tuple and flattens the whole structure | |
356 """ | |
357 flatten_tuple(t::NTuple{N, Number} where N) = t | |
358 flatten_tuple(t::Tuple) = ((flatten_tuple.(t)...)...,) # simplify? | |
359 flatten_tuple(ts::Vararg) = flatten_tuple(ts) | |
360 | |
361 @doc raw""" | 218 @doc raw""" |
362 LazyOuterProduct(tms...) | 219 LazyOuterProduct(tms...) |
363 | 220 |
364 Creates a `TensorMappingComposition` for the outerproduct of `tms...`. | 221 Creates a `LazyTensorComposition` for the outerproduct of `tms...`. |
365 This is done by separating the outer product into regular products of outer products involving only identity mappings and one non-identity mapping. | 222 This is done by separating the outer product into regular products of outer products involving only identity mappings and one non-identity mapping. |
366 | 223 |
367 First let | 224 First let |
368 ```math | 225 ```math |
369 \begin{aligned} | 226 \begin{aligned} |
395 (A⊗B⊗C)v = [(A⊗I_{|M|}⊗I_{|P|}) [(I_{|J|}⊗B⊗I_{|P|}) [(I_{|J|}⊗I_{|N|}⊗C)v]]] | 252 (A⊗B⊗C)v = [(A⊗I_{|M|}⊗I_{|P|}) [(I_{|J|}⊗B⊗I_{|P|}) [(I_{|J|}⊗I_{|N|}⊗C)v]]] |
396 ``` | 253 ``` |
397 """ | 254 """ |
398 function LazyOuterProduct end | 255 function LazyOuterProduct end |
399 | 256 |
400 function LazyOuterProduct(tm1::TensorMapping{T}, tm2::TensorMapping{T}) where T | 257 function LazyOuterProduct(tm1::LazyTensor{T}, tm2::LazyTensor{T}) where T |
401 itm1 = InflatedTensorMapping(tm1, IdentityMapping{T}(range_size(tm2))) | 258 itm1 = InflatedLazyTensor(tm1, IdentityTensor{T}(range_size(tm2))) |
402 itm2 = InflatedTensorMapping(IdentityMapping{T}(domain_size(tm1)),tm2) | 259 itm2 = InflatedLazyTensor(IdentityTensor{T}(domain_size(tm1)),tm2) |
403 | 260 |
404 return itm1∘itm2 | 261 return itm1∘itm2 |
405 end | 262 end |
406 | 263 |
407 LazyOuterProduct(t1::IdentityMapping{T}, t2::IdentityMapping{T}) where T = IdentityMapping{T}(t1.size...,t2.size...) | 264 LazyOuterProduct(t1::IdentityTensor{T}, t2::IdentityTensor{T}) where T = IdentityTensor{T}(t1.size...,t2.size...) |
408 LazyOuterProduct(t1::TensorMapping, t2::IdentityMapping) = InflatedTensorMapping(t1, t2) | 265 LazyOuterProduct(t1::LazyTensor, t2::IdentityTensor) = InflatedLazyTensor(t1, t2) |
409 LazyOuterProduct(t1::IdentityMapping, t2::TensorMapping) = InflatedTensorMapping(t1, t2) | 266 LazyOuterProduct(t1::IdentityTensor, t2::LazyTensor) = InflatedLazyTensor(t1, t2) |
410 | 267 |
411 LazyOuterProduct(tms::Vararg{TensorMapping}) = foldl(LazyOuterProduct, tms) | 268 LazyOuterProduct(tms::Vararg{LazyTensor}) = foldl(LazyOuterProduct, tms) |
412 | 269 |
413 ⊗(a::TensorMapping, b::TensorMapping) = LazyOuterProduct(a,b) | |
414 | 270 |
415 | 271 |
416 """ | 272 """ |
417 inflate(tm, sz, dir) | 273 inflate(tm, sz, dir) |
418 | 274 |
419 Inflate `tm` with identity tensors in all directions `d` for `d != dir`. | 275 Inflate `tm` with identity tensors in all directions `d` for `d != dir`. |
420 | 276 |
421 # TODO: Describe when it is useful | 277 # TODO: Describe when it is useful |
422 """ | 278 """ |
423 function inflate(tm::TensorMapping, sz, dir) | 279 function inflate(tm::LazyTensor, sz, dir) |
424 Is = IdentityMapping{eltype(tm)}.(sz) | 280 Is = IdentityTensor{eltype(tm)}.(sz) |
425 parts = Base.setindex(Is, tm, dir) | 281 parts = Base.setindex(Is, tm, dir) |
426 return foldl(⊗, parts) | 282 return foldl(⊗, parts) |
427 end | 283 end |
428 | 284 |
429 function check_domain_size(tm::TensorMapping, sz) | 285 function check_domain_size(tm::LazyTensor, sz) |
430 if domain_size(tm) != sz | 286 if domain_size(tm) != sz |
431 throw(SizeMismatch(tm,sz)) | 287 throw(DomainSizeMismatch(tm,sz)) |
432 end | 288 end |
433 end | 289 end |
434 | 290 |
435 struct SizeMismatch <: Exception | 291 function check_range_size(tm::LazyTensor, sz) |
436 tm::TensorMapping | 292 if range_size(tm) != sz |
293 throw(RangeSizeMismatch(tm,sz)) | |
294 end | |
295 end | |
296 | |
297 struct DomainSizeMismatch <: Exception | |
298 tm::LazyTensor | |
437 sz | 299 sz |
438 end | 300 end |
439 | 301 |
440 function Base.showerror(io::IO, err::SizeMismatch) | 302 function Base.showerror(io::IO, err::DomainSizeMismatch) |
441 print(io, "SizeMismatch: ") | 303 print(io, "DomainSizeMismatch: ") |
442 print(io, "domain size $(domain_size(err.tm)) of TensorMapping not matching size $(err.sz)") | 304 print(io, "domain size $(domain_size(err.tm)) of LazyTensor not matching size $(err.sz)") |
443 end | 305 end |
306 | |
307 | |
308 struct RangeSizeMismatch <: Exception | |
309 tm::LazyTensor | |
310 sz | |
311 end | |
312 | |
313 function Base.showerror(io::IO, err::RangeSizeMismatch) | |
314 print(io, "RangeSizeMismatch: ") | |
315 print(io, "range size $(range_size(err.tm)) of LazyTensor not matching size $(err.sz)") | |
316 end |