Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/derivatives/second_derivative_test.jl @ 1858:4a9be96f2569 feature/documenter_logo
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 12 Jan 2025 21:18:44 +0100 |
parents | 471a948cd2b2 |
children |
comparison
equal
deleted
inserted
replaced
1857:ffde7dad9da5 | 1858:4a9be96f2569 |
---|---|
1 using Test | 1 using Test |
2 | 2 |
3 using Sbplib.SbpOperators | 3 using Diffinitive.SbpOperators |
4 using Sbplib.Grids | 4 using Diffinitive.Grids |
5 using Sbplib.LazyTensors | 5 using Diffinitive.LazyTensors |
6 | 6 |
7 import Sbplib.SbpOperators.VolumeOperator | 7 import Diffinitive.SbpOperators.VolumeOperator |
8 | |
9 # TODO: Refactor these test to look more like the tests in first_derivative_test.jl. | |
8 | 10 |
9 @testset "SecondDerivative" begin | 11 @testset "SecondDerivative" begin |
10 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 12 operator_path = sbp_operators_path()*"standard_diagonal.toml" |
13 stencil_set = read_stencil_set(operator_path; order=4) | |
11 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 14 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) |
12 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | 15 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) |
13 Lx = 3.5 | 16 Lx = 3.5 |
14 Ly = 3. | 17 Ly = 3. |
15 g_1D = EquidistantGrid(121, 0.0, Lx) | 18 g_1D = equidistant_grid(0.0, Lx, 121) |
16 g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) | 19 g_2D = equidistant_grid((0.0, 0.0), (Lx, Ly), 121, 123) |
17 | 20 |
18 @testset "Constructors" begin | 21 @testset "Constructors" begin |
19 @testset "1D" begin | 22 @testset "1D" begin |
20 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | 23 Dₓₓ = second_derivative(g_1D, stencil_set) |
21 @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils,1) | 24 @test Dₓₓ == second_derivative(g_1D, inner_stencil, closure_stencils) |
22 @test Dₓₓ isa VolumeOperator | 25 @test Dₓₓ isa LazyTensor{Float64,1,1} |
23 end | 26 end |
24 @testset "2D" begin | 27 @testset "2D" begin |
25 Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1) | 28 Dₓₓ = second_derivative(g_2D,stencil_set,1) |
26 D2 = second_derivative(g_1D,inner_stencil,closure_stencils) | 29 @test Dₓₓ isa LazyTensor{Float64,2,2} |
27 I = IdentityMapping{Float64}(size(g_2D)[2]) | |
28 @test Dₓₓ == D2⊗I | |
29 @test Dₓₓ isa TensorMapping{T,2,2} where T | |
30 end | 30 end |
31 end | 31 end |
32 | 32 |
33 # Exact differentiation is measured point-wise. In other cases | 33 # Exact differentiation is measured point-wise. In other cases |
34 # the error is measured in the l2-norm. | 34 # the error is measured in the l2-norm. |
37 l2(v) = sqrt(spacing(g_1D)[1]*sum(v.^2)); | 37 l2(v) = sqrt(spacing(g_1D)[1]*sum(v.^2)); |
38 monomials = () | 38 monomials = () |
39 maxOrder = 4; | 39 maxOrder = 4; |
40 for i = 0:maxOrder-1 | 40 for i = 0:maxOrder-1 |
41 f_i(x) = 1/factorial(i)*x^i | 41 f_i(x) = 1/factorial(i)*x^i |
42 monomials = (monomials...,evalOn(g_1D,f_i)) | 42 monomials = (monomials...,eval_on(g_1D,f_i)) |
43 end | 43 end |
44 v = evalOn(g_1D,x -> sin(x)) | 44 v = eval_on(g_1D,x -> sin(x)) |
45 vₓₓ = evalOn(g_1D,x -> -sin(x)) | 45 vₓₓ = eval_on(g_1D,x -> -sin(x)) |
46 | 46 |
47 # 2nd order interior stencil, 1nd order boundary stencil, | 47 # 2nd order interior stencil, 1nd order boundary stencil, |
48 # implies that L*v should be exact for monomials up to order 2. | 48 # implies that L*v should be exact for monomials up to order 2. |
49 @testset "2nd order" begin | 49 @testset "2nd order" begin |
50 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 50 stencil_set = read_stencil_set(operator_path; order=2) |
51 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 51 Dₓₓ = second_derivative(g_1D,stencil_set) |
52 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
53 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | |
54 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 52 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
55 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 53 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
56 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | 54 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 |
57 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 | 55 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 |
58 end | 56 end |
59 | 57 |
60 # 4th order interior stencil, 2nd order boundary stencil, | 58 # 4th order interior stencil, 2nd order boundary stencil, |
61 # implies that L*v should be exact for monomials up to order 3. | 59 # implies that L*v should be exact for monomials up to order 3. |
62 @testset "4th order" begin | 60 @testset "4th order" begin |
63 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 61 stencil_set = read_stencil_set(operator_path; order=4) |
64 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 62 Dₓₓ = second_derivative(g_1D,stencil_set) |
65 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
66 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | |
67 # NOTE: high tolerances for checking the "exact" differentiation | 63 # NOTE: high tolerances for checking the "exact" differentiation |
68 # due to accumulation of round-off errors/cancellation errors? | 64 # due to accumulation of round-off errors/cancellation errors? |
69 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 65 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
70 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 66 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
71 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | 67 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 |
73 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-4 norm = l2 | 69 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-4 norm = l2 |
74 end | 70 end |
75 end | 71 end |
76 | 72 |
77 @testset "2D" begin | 73 @testset "2D" begin |
78 l2(v) = sqrt(prod(spacing(g_2D))*sum(v.^2)); | 74 l2(v) = sqrt(prod(spacing.(g_2D.grids))*sum(v.^2)); |
79 binomials = () | 75 binomials = () |
80 maxOrder = 4; | 76 maxOrder = 4; |
81 for i = 0:maxOrder-1 | 77 for i = 0:maxOrder-1 |
82 f_i(x,y) = 1/factorial(i)*y^i + x^i | 78 f_i(x,y) = 1/factorial(i)*y^i + x^i |
83 binomials = (binomials...,evalOn(g_2D,f_i)) | 79 binomials = (binomials...,eval_on(g_2D,f_i)) |
84 end | 80 end |
85 v = evalOn(g_2D, (x,y) -> sin(x)+cos(y)) | 81 v = eval_on(g_2D, (x,y) -> sin(x)+cos(y)) |
86 v_yy = evalOn(g_2D,(x,y) -> -cos(y)) | 82 v_yy = eval_on(g_2D,(x,y) -> -cos(y)) |
87 | 83 |
88 # 2nd order interior stencil, 1st order boundary stencil, | 84 # 2nd order interior stencil, 1st order boundary stencil, |
89 # implies that L*v should be exact for binomials up to order 2. | 85 # implies that L*v should be exact for binomials up to order 2. |
90 @testset "2nd order" begin | 86 @testset "2nd order" begin |
91 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 87 stencil_set = read_stencil_set(operator_path; order=2) |
92 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 88 Dyy = second_derivative(g_2D,stencil_set,2) |
93 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
94 Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) | |
95 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 89 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
96 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 90 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
97 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | 91 @test Dyy*binomials[3] ≈ eval_on(g_2D,(x,y)->1.) atol = 5e-9 |
98 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 | 92 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 |
99 end | 93 end |
100 | 94 |
101 # 4th order interior stencil, 2nd order boundary stencil, | 95 # 4th order interior stencil, 2nd order boundary stencil, |
102 # implies that L*v should be exact for binomials up to order 3. | 96 # implies that L*v should be exact for binomials up to order 3. |
103 @testset "4th order" begin | 97 @testset "4th order" begin |
104 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 98 stencil_set = read_stencil_set(operator_path; order=4) |
105 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 99 Dyy = second_derivative(g_2D,stencil_set,2) |
106 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
107 Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) | |
108 # NOTE: high tolerances for checking the "exact" differentiation | 100 # NOTE: high tolerances for checking the "exact" differentiation |
109 # due to accumulation of round-off errors/cancellation errors? | 101 # due to accumulation of round-off errors/cancellation errors? |
110 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 102 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
111 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 103 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
112 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | 104 @test Dyy*binomials[3] ≈ eval_on(g_2D,(x,y)->1.) atol = 5e-9 |
113 @test Dyy*binomials[4] ≈ evalOn(g_2D,(x,y)->y) atol = 5e-9 | 105 @test Dyy*binomials[4] ≈ eval_on(g_2D,(x,y)->y) atol = 5e-9 |
114 @test Dyy*v ≈ v_yy rtol = 5e-4 norm = l2 | 106 @test Dyy*v ≈ v_yy rtol = 5e-4 norm = l2 |
115 end | 107 end |
116 end | 108 end |
117 end | 109 end |
118 end | 110 end |