Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/volume_operator.jl @ 1858:4a9be96f2569 feature/documenter_logo
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 12 Jan 2025 21:18:44 +0100 |
parents | 0656b46a1a74 |
children |
comparison
equal
deleted
inserted
replaced
1857:ffde7dad9da5 | 1858:4a9be96f2569 |
---|---|
1 """ | 1 """ |
2 volume_operator(grid, inner_stencil, closure_stencils, parity, direction) | 2 VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} |
3 | 3 |
4 Creates a volume operator on a `Dim`-dimensional grid acting along the | 4 A one-dimensional constant coefficients stencil operator. |
5 specified coordinate `direction`. The action of the operator is determined by | |
6 the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the | |
7 corresponding `VolumeOperator` tensor mapping is returned. When `Dim>1`, the | |
8 returned operator is the appropriate outer product of a one-dimensional | |
9 operators and `IdentityMapping`s, e.g for `Dim=3` the volume operator in the | |
10 y-direction is `I⊗op⊗I`. | |
11 """ | 5 """ |
12 function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction) | 6 struct VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} |
13 #TODO: Check that direction <= Dim? | 7 inner_stencil::Stencil{T,N} |
8 closure_stencils::NTuple{M,Stencil{T,K}} | |
9 size::Int | |
10 parity::Parity | |
14 | 11 |
15 # Create 1D volume operator in along coordinate direction | 12 function VolumeOperator(inner_stencil::Stencil{T,N}, closure_stencils::Tuple{Stencil{T,K}, Vararg{Stencil{T,K}}}, size::Int, parity::Parity) where {T,N,K} |
16 op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity) | 13 M = length(closure_stencils) |
17 # Create 1D IdentityMappings for each coordinate direction | 14 return new{T,N,M,K}(inner_stencil, closure_stencils, size, parity) |
18 one_d_grids = restrict.(Ref(grid), Tuple(1:dimension(grid))) | 15 end |
19 Is = IdentityMapping{eltype(grid)}.(size.(one_d_grids)) | |
20 # Formulate the correct outer product sequence of the identity mappings and | |
21 # the volume operator | |
22 parts = Base.setindex(Is, op, direction) | |
23 return foldl(⊗, parts) | |
24 end | 16 end |
25 | 17 |
26 """ | 18 function VolumeOperator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity) |
27 VolumeOperator{T,N,M,K} <: TensorOperator{T,1} | 19 return VolumeOperator(inner_stencil, Tuple(closure_stencils), size(grid,1), parity) |
28 Implements a one-dimensional constant coefficients volume operator | 20 end # TBD: Remove this function? |
29 """ | |
30 struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1} | |
31 inner_stencil::Stencil{T,N} | |
32 closure_stencils::NTuple{M,Stencil{T,K}} | |
33 size::NTuple{1,Int} | |
34 parity::Parity | |
35 end | |
36 | |
37 function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity) | |
38 return VolumeOperator(inner_stencil, Tuple(closure_stencils), size(grid), parity) | |
39 end | |
40 | 21 |
41 closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M | 22 closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M |
42 | 23 |
43 LazyTensors.range_size(op::VolumeOperator) = op.size | 24 LazyTensors.range_size(op::VolumeOperator) = (op.size,) |
44 LazyTensors.domain_size(op::VolumeOperator) = op.size | 25 LazyTensors.domain_size(op::VolumeOperator) = (op.size,) |
45 | 26 |
46 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Lower}) where T | 27 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Lower}) |
47 return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) | 28 return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) |
48 end | 29 end |
49 | 30 |
50 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Interior}) where T | 31 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Interior}) |
51 return apply_stencil(op.inner_stencil, v, Int(i)) | 32 return apply_stencil(op.inner_stencil, v, Int(i)) |
52 end | 33 end |
53 | 34 |
54 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Upper}) where T | 35 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Upper}) |
55 return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i)) | 36 return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size-Int(i)+1], v, Int(i)) |
56 end | 37 end |
57 | 38 |
58 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i) where T | 39 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i) |
59 r = getregion(i, closure_size(op), op.size[1]) | 40 r = getregion(i, closure_size(op), op.size) |
60 return LazyTensors.apply(op, v, Index(i, r)) | 41 return LazyTensors.apply(op, v, Index(i, r)) |
61 end | 42 end |
43 # TODO: Move this to LazyTensors when we have the region communication down. |