Mercurial > repos > public > sbplib_julia
comparison test/testSbpOperators.jl @ 404:48d57f185f86
Merge in refactor/sbp_operators_tests/collect_and_compare
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 07 Oct 2020 12:33:19 +0200 |
parents | 3cecbfb3d623 |
children | 21fba50cb5b0 547639572208 4aa7fe13a984 |
comparison
equal
deleted
inserted
replaced
402:1936e38fe51e | 404:48d57f185f86 |
---|---|
1 using Test | 1 using Test |
2 using Sbplib.SbpOperators | 2 using Sbplib.SbpOperators |
3 using Sbplib.Grids | 3 using Sbplib.Grids |
4 using Sbplib.RegionIndices | 4 using Sbplib.RegionIndices |
5 using Sbplib.LazyTensors | 5 using Sbplib.LazyTensors |
6 | 6 using LinearAlgebra |
7 # TODO: Remove collects for all the tests with TensorApplications | |
8 | 7 |
9 @testset "SbpOperators" begin | 8 @testset "SbpOperators" begin |
10 | 9 |
11 # @testset "apply_quadrature" begin | 10 # @testset "apply_quadrature" begin |
12 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 11 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
30 # end | 29 # end |
31 | 30 |
32 @testset "SecondDerivative" begin | 31 @testset "SecondDerivative" begin |
33 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 32 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
34 L = 3.5 | 33 L = 3.5 |
35 g = EquidistantGrid((101,), (0.0,), (L,)) | 34 g = EquidistantGrid(101, 0.0, L) |
36 h_inv = inverse_spacing(g) | |
37 h = 1/h_inv[1]; | |
38 Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils) | 35 Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils) |
39 | 36 |
40 f0(x::Float64) = 1. | 37 f0(x) = 1. |
41 f1(x::Float64) = x | 38 f1(x) = x |
42 f2(x::Float64) = 1/2*x^2 | 39 f2(x) = 1/2*x^2 |
43 f3(x::Float64) = 1/6*x^3 | 40 f3(x) = 1/6*x^3 |
44 f4(x::Float64) = 1/24*x^4 | 41 f4(x) = 1/24*x^4 |
45 f5(x::Float64) = sin(x) | 42 f5(x) = sin(x) |
46 f5ₓₓ(x::Float64) = -f5(x) | 43 f5ₓₓ(x) = -f5(x) |
47 | 44 |
48 v0 = evalOn(g,f0) | 45 v0 = evalOn(g,f0) |
49 v1 = evalOn(g,f1) | 46 v1 = evalOn(g,f1) |
50 v2 = evalOn(g,f2) | 47 v2 = evalOn(g,f2) |
51 v3 = evalOn(g,f3) | 48 v3 = evalOn(g,f3) |
53 v5 = evalOn(g,f5) | 50 v5 = evalOn(g,f5) |
54 | 51 |
55 @test Dₓₓ isa TensorMapping{T,1,1} where T | 52 @test Dₓₓ isa TensorMapping{T,1,1} where T |
56 @test Dₓₓ' isa TensorMapping{T,1,1} where T | 53 @test Dₓₓ' isa TensorMapping{T,1,1} where T |
57 | 54 |
58 # TODO: Should perhaps set tolerance level for isapporx instead? | |
59 # Are these tolerance levels resonable or should tests be constructed | |
60 # differently? | |
61 equalitytol = 0.5*1e-10 | |
62 accuracytol = 0.5*1e-3 | |
63 # 4th order interior stencil, 2nd order boundary stencil, | 55 # 4th order interior stencil, 2nd order boundary stencil, |
64 # implies that L*v should be exact for v - monomial up to order 3. | 56 # implies that L*v should be exact for v - monomial up to order 3. |
65 # Exact differentiation is measured point-wise. For other grid functions | 57 # Exact differentiation is measured point-wise. For other grid functions |
66 # the error is measured in the l2-norm. | 58 # the error is measured in the l2-norm. |
67 @test all(abs.(collect(Dₓₓ*v0)) .<= equalitytol) | 59 @test norm(Dₓₓ*v0) ≈ 0.0 atol=5e-10 |
68 @test all(abs.(collect(Dₓₓ*v1)) .<= equalitytol) | 60 @test norm(Dₓₓ*v1) ≈ 0.0 atol=5e-10 |
69 @test all(abs.((collect(Dₓₓ*v2) - v0)) .<= equalitytol) | 61 @test Dₓₓ*v2 ≈ v0 atol=5e-11 |
70 @test all(abs.((collect(Dₓₓ*v3) - v1)) .<= equalitytol) | 62 @test Dₓₓ*v3 ≈ v1 atol=5e-11 |
71 e4 = collect(Dₓₓ*v4) - v2 | 63 |
72 e5 = collect(Dₓₓ*v5) + v5 | 64 h = spacing(g)[1]; |
73 @test sqrt(h*sum(collect(e4.^2))) <= accuracytol | 65 l2(v) = sqrt(h*sum(v.^2)) |
74 @test sqrt(h*sum(collect(e5.^2))) <= accuracytol | 66 @test Dₓₓ*v4 ≈ v2 atol=5e-4 norm=l2 |
75 end | 67 @test Dₓₓ*v5 ≈ -v5 atol=5e-4 norm=l2 |
68 end | |
69 | |
76 | 70 |
77 @testset "Laplace2D" begin | 71 @testset "Laplace2D" begin |
78 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 72 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
79 Lx = 1.5 | 73 Lx = 1.5 |
80 Ly = 3.2 | 74 Ly = 3.2 |
81 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) | 75 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) |
82 L = Laplace(g, op.innerStencil, op.closureStencils) | 76 L = Laplace(g, op.innerStencil, op.closureStencils) |
83 | 77 |
84 | 78 |
85 f0(x::Float64,y::Float64) = 2. | 79 f0(x,y) = 2. |
86 f1(x::Float64,y::Float64) = x+y | 80 f1(x,y) = x+y |
87 f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 | 81 f2(x,y) = 1/2*x^2 + 1/2*y^2 |
88 f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 | 82 f3(x,y) = 1/6*x^3 + 1/6*y^3 |
89 f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 | 83 f4(x,y) = 1/24*x^4 + 1/24*y^4 |
90 f5(x::Float64,y::Float64) = sin(x) + cos(y) | 84 f5(x,y) = sin(x) + cos(y) |
91 f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) | 85 f5ₓₓ(x,y) = -f5(x,y) |
92 | 86 |
93 v0 = evalOn(g,f0) | 87 v0 = evalOn(g,f0) |
94 v1 = evalOn(g,f1) | 88 v1 = evalOn(g,f1) |
95 v2 = evalOn(g,f2) | 89 v2 = evalOn(g,f2) |
96 v3 = evalOn(g,f3) | 90 v3 = evalOn(g,f3) |
99 v5ₓₓ = evalOn(g,f5ₓₓ) | 93 v5ₓₓ = evalOn(g,f5ₓₓ) |
100 | 94 |
101 @test L isa TensorMapping{T,2,2} where T | 95 @test L isa TensorMapping{T,2,2} where T |
102 @test L' isa TensorMapping{T,2,2} where T | 96 @test L' isa TensorMapping{T,2,2} where T |
103 | 97 |
104 # TODO: Should perhaps set tolerance level for isapporx instead? | |
105 # Are these tolerance levels resonable or should tests be constructed | |
106 # differently? | |
107 equalitytol = 0.5*1e-10 | |
108 accuracytol = 0.5*1e-3 | |
109 # 4th order interior stencil, 2nd order boundary stencil, | 98 # 4th order interior stencil, 2nd order boundary stencil, |
110 # implies that L*v should be exact for v - monomial up to order 3. | 99 # implies that L*v should be exact for v - monomial up to order 3. |
111 # Exact differentiation is measured point-wise. For other grid functions | 100 # Exact differentiation is measured point-wise. For other grid functions |
112 # the error is measured in the H-norm. | 101 # the error is measured in the H-norm. |
113 @test all(abs.(collect(L*v0)) .<= equalitytol) | 102 @test norm(L*v0) ≈ 0 atol=5e-10 |
114 @test all(abs.(collect(L*v1)) .<= equalitytol) | 103 @test norm(L*v1) ≈ 0 atol=5e-10 |
115 @test all(collect(L*v2) .≈ v0) # Seems to be more accurate | 104 @test L*v2 ≈ v0 # Seems to be more accurate |
116 @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) | 105 @test L*v3 ≈ v1 atol=5e-10 |
117 e4 = collect(L*v4) - v2 | |
118 e5 = collect(L*v5) - v5ₓₓ | |
119 | 106 |
120 h = spacing(g) | 107 h = spacing(g) |
121 @test sqrt(prod(h)*sum(collect(e4.^2))) <= accuracytol | 108 l2(v) = sqrt(prod(h)*sum(v.^2)) |
122 @test sqrt(prod(h)*sum(collect(e5.^2))) <= accuracytol | 109 @test L*v4 ≈ v2 atol=5e-4 norm=l2 |
110 @test L*v5 ≈ v5ₓₓ atol=5e-4 norm=l2 | |
123 end | 111 end |
124 | 112 |
125 @testset "DiagonalInnerProduct" begin | 113 @testset "DiagonalInnerProduct" begin |
126 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 114 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
127 L = 2.3 | 115 L = 2.3 |
128 g = EquidistantGrid((77,), (0.0,), (L,)) | 116 g = EquidistantGrid(77, 0.0, L) |
129 H = DiagonalInnerProduct(g,op.quadratureClosure) | 117 H = DiagonalInnerProduct(g,op.quadratureClosure) |
130 v = ones(Float64, size(g)) | 118 v = ones(Float64, size(g)) |
131 | 119 |
132 @test H isa TensorMapping{T,1,1} where T | 120 @test H isa TensorMapping{T,1,1} where T |
133 @test H' isa TensorMapping{T,1,1} where T | 121 @test H' isa TensorMapping{T,1,1} where T |
134 @test sum(collect(H*v)) ≈ L | 122 @test sum(H*v) ≈ L |
135 @test collect(H*v) == collect(H'*v) | 123 @test H*v == H'*v |
136 end | 124 end |
137 | 125 |
138 @testset "Quadrature" begin | 126 @testset "Quadrature" begin |
139 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 127 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
140 Lx = 2.3 | 128 Lx = 2.3 |
156 end | 144 end |
157 | 145 |
158 @testset "InverseDiagonalInnerProduct" begin | 146 @testset "InverseDiagonalInnerProduct" begin |
159 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 147 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
160 L = 2.3 | 148 L = 2.3 |
161 g = EquidistantGrid((77,), (0.0,), (L,)) | 149 g = EquidistantGrid(77, 0.0, L) |
162 H = DiagonalInnerProduct(g, op.quadratureClosure) | 150 H = DiagonalInnerProduct(g, op.quadratureClosure) |
163 Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure) | 151 Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure) |
164 v = evalOn(g, x->sin(x)) | 152 v = evalOn(g, x->sin(x)) |
165 | 153 |
166 @test Hi isa TensorMapping{T,1,1} where T | 154 @test Hi isa TensorMapping{T,1,1} where T |
167 @test Hi' isa TensorMapping{T,1,1} where T | 155 @test Hi' isa TensorMapping{T,1,1} where T |
168 @test collect(Hi*H*v) ≈ v | 156 @test Hi*H*v ≈ v |
169 @test collect(Hi*v) == collect(Hi'*v) | 157 @test Hi*v == Hi'*v |
170 end | 158 end |
171 | 159 |
172 @testset "InverseQuadrature" begin | 160 @testset "InverseQuadrature" begin |
173 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 161 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
174 Lx = 7.3 | 162 Lx = 7.3 |
179 Qinv = InverseQuadrature(g, op.quadratureClosure) | 167 Qinv = InverseQuadrature(g, op.quadratureClosure) |
180 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | 168 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) |
181 | 169 |
182 @test Qinv isa TensorMapping{T,2,2} where T | 170 @test Qinv isa TensorMapping{T,2,2} where T |
183 @test Qinv' isa TensorMapping{T,2,2} where T | 171 @test Qinv' isa TensorMapping{T,2,2} where T |
184 @test_broken collect(Qinv*(Q*v)) ≈ v | 172 @test_broken Qinv*(Q*v) ≈ v |
185 @test collect(Qinv*v) == collect(Qinv'*v) | 173 @test Qinv*v == Qinv'*v |
186 end | 174 end |
187 # | 175 # |
188 # @testset "BoundaryValue" begin | 176 # @testset "BoundaryValue" begin |
189 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 177 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
190 # g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) | 178 # g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) |
212 # @test size(e_w'*v) == (5,) | 200 # @test size(e_w'*v) == (5,) |
213 # @test size(e_e'*v) == (5,) | 201 # @test size(e_e'*v) == (5,) |
214 # @test size(e_s'*v) == (4,) | 202 # @test size(e_s'*v) == (4,) |
215 # @test size(e_n'*v) == (4,) | 203 # @test size(e_n'*v) == (4,) |
216 # | 204 # |
217 # @test collect(e_w'*v) == [10,7,4,1.0,1] | 205 # @test e_w'*v == [10,7,4,1.0,1] |
218 # @test collect(e_e'*v) == [13,10,7,4,4.0] | 206 # @test e_e'*v == [13,10,7,4,4.0] |
219 # @test collect(e_s'*v) == [10,11,12,13.0] | 207 # @test e_s'*v == [10,11,12,13.0] |
220 # @test collect(e_n'*v) == [1,2,3,4.0] | 208 # @test e_n'*v == [1,2,3,4.0] |
221 # | 209 # |
222 # g_x = [1,2,3,4.0] | 210 # g_x = [1,2,3,4.0] |
223 # g_y = [5,4,3,2,1.0] | 211 # g_y = [5,4,3,2,1.0] |
224 # | 212 # |
225 # G_w = zeros(Float64, (4,5)) | 213 # G_w = zeros(Float64, (4,5)) |
238 # @test size(e_e*g_y) == (UnknownDim,5) | 226 # @test size(e_e*g_y) == (UnknownDim,5) |
239 # @test size(e_s*g_x) == (4,UnknownDim) | 227 # @test size(e_s*g_x) == (4,UnknownDim) |
240 # @test size(e_n*g_x) == (4,UnknownDim) | 228 # @test size(e_n*g_x) == (4,UnknownDim) |
241 # | 229 # |
242 # # These tests should be moved to where they are possible (i.e we know what the grid should be) | 230 # # These tests should be moved to where they are possible (i.e we know what the grid should be) |
243 # @test_broken collect(e_w*g_y) == G_w | 231 # @test_broken e_w*g_y == G_w |
244 # @test_broken collect(e_e*g_y) == G_e | 232 # @test_broken e_e*g_y == G_e |
245 # @test_broken collect(e_s*g_x) == G_s | 233 # @test_broken e_s*g_x == G_s |
246 # @test_broken collect(e_n*g_x) == G_n | 234 # @test_broken e_n*g_x == G_n |
247 # end | 235 # end |
248 # | 236 # |
249 # @testset "NormalDerivative" begin | 237 # @testset "NormalDerivative" begin |
250 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 238 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
251 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) | 239 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) |
271 # @test size(d_w'*v) == (6,) | 259 # @test size(d_w'*v) == (6,) |
272 # @test size(d_e'*v) == (6,) | 260 # @test size(d_e'*v) == (6,) |
273 # @test size(d_s'*v) == (5,) | 261 # @test size(d_s'*v) == (5,) |
274 # @test size(d_n'*v) == (5,) | 262 # @test size(d_n'*v) == (5,) |
275 # | 263 # |
276 # @test collect(d_w'*v) ≈ v∂x[1,:] | 264 # @test d_w'*v .≈ v∂x[1,:] |
277 # @test collect(d_e'*v) ≈ v∂x[5,:] | 265 # @test d_e'*v .≈ v∂x[5,:] |
278 # @test collect(d_s'*v) ≈ v∂y[:,1] | 266 # @test d_s'*v .≈ v∂y[:,1] |
279 # @test collect(d_n'*v) ≈ v∂y[:,6] | 267 # @test d_n'*v .≈ v∂y[:,6] |
280 # | 268 # |
281 # | 269 # |
282 # d_x_l = zeros(Float64, 5) | 270 # d_x_l = zeros(Float64, 5) |
283 # d_x_u = zeros(Float64, 5) | 271 # d_x_u = zeros(Float64, 5) |
284 # for i ∈ eachindex(d_x_l) | 272 # for i ∈ eachindex(d_x_l) |
315 # @test size(d_e*g_y) == (UnknownDim,6) | 303 # @test size(d_e*g_y) == (UnknownDim,6) |
316 # @test size(d_s*g_x) == (5,UnknownDim) | 304 # @test size(d_s*g_x) == (5,UnknownDim) |
317 # @test size(d_n*g_x) == (5,UnknownDim) | 305 # @test size(d_n*g_x) == (5,UnknownDim) |
318 # | 306 # |
319 # # These tests should be moved to where they are possible (i.e we know what the grid should be) | 307 # # These tests should be moved to where they are possible (i.e we know what the grid should be) |
320 # @test_broken collect(d_w*g_y) ≈ G_w | 308 # @test_broken d_w*g_y .≈ G_w |
321 # @test_broken collect(d_e*g_y) ≈ G_e | 309 # @test_broken d_e*g_y .≈ G_e |
322 # @test_broken collect(d_s*g_x) ≈ G_s | 310 # @test_broken d_s*g_x .≈ G_s |
323 # @test_broken collect(d_n*g_x) ≈ G_n | 311 # @test_broken d_n*g_x .≈ G_n |
324 # end | 312 # end |
325 # | 313 # |
326 # @testset "BoundaryQuadrature" begin | 314 # @testset "BoundaryQuadrature" begin |
327 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 315 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
328 # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) | 316 # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) |
360 # @test size(H_w*v_w) == (11,) | 348 # @test size(H_w*v_w) == (11,) |
361 # @test size(H_e*v_e) == (11,) | 349 # @test size(H_e*v_e) == (11,) |
362 # @test size(H_s*v_s) == (10,) | 350 # @test size(H_s*v_s) == (10,) |
363 # @test size(H_n*v_n) == (10,) | 351 # @test size(H_n*v_n) == (10,) |
364 # | 352 # |
365 # @test collect(H_w*v_w) ≈ q_y.*v_w | 353 # @test H_w*v_w .≈ q_y.*v_w |
366 # @test collect(H_e*v_e) ≈ q_y.*v_e | 354 # @test H_e*v_e .≈ q_y.*v_e |
367 # @test collect(H_s*v_s) ≈ q_x.*v_s | 355 # @test H_s*v_s .≈ q_x.*v_s |
368 # @test collect(H_n*v_n) ≈ q_x.*v_n | 356 # @test H_n*v_n .≈ q_x.*v_n |
369 # | 357 # |
370 # @test collect(H_w'*v_w) == collect(H_w'*v_w) | 358 # @test H_w'*v_w == H_w'*v_w |
371 # @test collect(H_e'*v_e) == collect(H_e'*v_e) | 359 # @test H_e'*v_e == H_e'*v_e |
372 # @test collect(H_s'*v_s) == collect(H_s'*v_s) | 360 # @test H_s'*v_s == H_s'*v_s |
373 # @test collect(H_n'*v_n) == collect(H_n'*v_n) | 361 # @test H_n'*v_n == H_n'*v_n |
374 # end | 362 # end |
375 | 363 |
376 end | 364 end |