comparison test/SbpOperators/volumeops/volume_operator_test.jl @ 728:45966c77cb20 feature/selectable_tests

Split tests for SbpOperators over several files
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 17 Mar 2021 20:34:40 +0100
parents
children 6114274447f5
comparison
equal deleted inserted replaced
727:95b207729b7a 728:45966c77cb20
1 using Test
2
3 using Sbplib.SbpOperators
4 using Sbplib.Grids
5
6 import Sbplib.SbpOperators.Stencil
7 import Sbplib.SbpOperators.volume_operator
8 import Sbplib.SbpOperators.odd
9 import Sbplib.SbpOperators.even
10
11 @testset "VolumeOperator" begin
12 inner_stencil = CenteredStencil(1/4, 2/4, 1/4)
13 closure_stencils = (Stencil(1/2, 1/2; center=1), Stencil(0.,1.; center=2))
14 g_1D = EquidistantGrid(11,0.,1.)
15 g_2D = EquidistantGrid((11,12),(0.,0.),(1.,1.))
16 g_3D = EquidistantGrid((11,12,10),(0.,0.,0.),(1.,1.,1.))
17 @testset "Constructors" begin
18 @testset "1D" begin
19 op = VolumeOperator(inner_stencil,closure_stencils,(11,),even)
20 @test op == VolumeOperator(g_1D,inner_stencil,closure_stencils,even)
21 @test op == volume_operator(g_1D,inner_stencil,closure_stencils,even,1)
22 @test op isa TensorMapping{T,1,1} where T
23 end
24 @testset "2D" begin
25 op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1)
26 op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2)
27 Ix = IdentityMapping{Float64}((11,))
28 Iy = IdentityMapping{Float64}((12,))
29 @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy
30 @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even)
31 @test op_x isa TensorMapping{T,2,2} where T
32 @test op_y isa TensorMapping{T,2,2} where T
33 end
34 @testset "3D" begin
35 op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1)
36 op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2)
37 op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3)
38 Ix = IdentityMapping{Float64}((11,))
39 Iy = IdentityMapping{Float64}((12,))
40 Iz = IdentityMapping{Float64}((10,))
41 @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy⊗Iz
42 @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even)⊗Iz
43 @test op_z == Ix⊗Iy⊗VolumeOperator(inner_stencil,closure_stencils,(10,),even)
44 @test op_x isa TensorMapping{T,3,3} where T
45 @test op_y isa TensorMapping{T,3,3} where T
46 @test op_z isa TensorMapping{T,3,3} where T
47 end
48 end
49
50 @testset "Sizes" begin
51 @testset "1D" begin
52 op = volume_operator(g_1D,inner_stencil,closure_stencils,even,1)
53 @test range_size(op) == domain_size(op) == size(g_1D)
54 end
55
56 @testset "2D" begin
57 op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1)
58 op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2)
59 @test range_size(op_y) == domain_size(op_y) ==
60 range_size(op_x) == domain_size(op_x) == size(g_2D)
61 end
62 @testset "3D" begin
63 op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1)
64 op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2)
65 op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3)
66 @test range_size(op_z) == domain_size(op_z) ==
67 range_size(op_y) == domain_size(op_y) ==
68 range_size(op_x) == domain_size(op_x) == size(g_3D)
69 end
70 end
71
72 op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1)
73 op_y = volume_operator(g_2D,inner_stencil,closure_stencils,odd,2)
74 v = zeros(size(g_2D))
75 Nx = size(g_2D)[1]
76 Ny = size(g_2D)[2]
77 for i = 1:Nx
78 v[i,:] .= i
79 end
80 rx = copy(v)
81 rx[1,:] .= 1.5
82 rx[Nx,:] .= (2*Nx-1)/2
83 ry = copy(v)
84 ry[:,Ny-1:Ny] = -v[:,Ny-1:Ny]
85
86 @testset "Application" begin
87 @test op_x*v ≈ rx rtol = 1e-14
88 @test op_y*v ≈ ry rtol = 1e-14
89 end
90
91 @testset "Regions" begin
92 @test (op_x*v)[Index(1,Lower),Index(3,Interior)] ≈ rx[1,3] rtol = 1e-14
93 @test (op_x*v)[Index(2,Lower),Index(3,Interior)] ≈ rx[2,3] rtol = 1e-14
94 @test (op_x*v)[Index(6,Interior),Index(3,Interior)] ≈ rx[6,3] rtol = 1e-14
95 @test (op_x*v)[Index(10,Upper),Index(3,Interior)] ≈ rx[10,3] rtol = 1e-14
96 @test (op_x*v)[Index(11,Upper),Index(3,Interior)] ≈ rx[11,3] rtol = 1e-14
97
98 @test_throws BoundsError (op_x*v)[Index(3,Lower),Index(3,Interior)]
99 @test_throws BoundsError (op_x*v)[Index(9,Upper),Index(3,Interior)]
100
101 @test (op_y*v)[Index(3,Interior),Index(1,Lower)] ≈ ry[3,1] rtol = 1e-14
102 @test (op_y*v)[Index(3,Interior),Index(2,Lower)] ≈ ry[3,2] rtol = 1e-14
103 @test (op_y*v)[Index(3,Interior),Index(6,Interior)] ≈ ry[3,6] rtol = 1e-14
104 @test (op_y*v)[Index(3,Interior),Index(11,Upper)] ≈ ry[3,11] rtol = 1e-14
105 @test (op_y*v)[Index(3,Interior),Index(12,Upper)] ≈ ry[3,12] rtol = 1e-14
106
107 @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(10,Upper)]
108 @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(3,Lower)]
109 end
110
111 @testset "Inferred" begin
112 @inferred apply(op_x, v,1,1)
113 @inferred apply(op_x, v, Index(1,Lower),Index(1,Lower))
114 @inferred apply(op_x, v, Index(6,Interior),Index(1,Lower))
115 @inferred apply(op_x, v, Index(11,Upper),Index(1,Lower))
116
117 @inferred apply(op_y, v,1,1)
118 @inferred apply(op_y, v, Index(1,Lower),Index(1,Lower))
119 @inferred apply(op_y, v, Index(1,Lower),Index(6,Interior))
120 @inferred apply(op_y, v, Index(1,Lower),Index(11,Upper))
121 end
122 end