Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/derivatives/secondderivative_test.jl @ 728:45966c77cb20 feature/selectable_tests
Split tests for SbpOperators over several files
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 17 Mar 2021 20:34:40 +0100 |
parents | |
children | 6114274447f5 |
comparison
equal
deleted
inserted
replaced
727:95b207729b7a | 728:45966c77cb20 |
---|---|
1 using Test | |
2 | |
3 using Sbplib.SbpOperators | |
4 using Sbplib.Grids | |
5 | |
6 import Sbplib.SbpOperators.VolumeOperator | |
7 | |
8 @testset "SecondDerivative" begin | |
9 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
10 Lx = 3.5 | |
11 Ly = 3. | |
12 g_1D = EquidistantGrid(121, 0.0, Lx) | |
13 g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) | |
14 | |
15 @testset "Constructors" begin | |
16 @testset "1D" begin | |
17 Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) | |
18 @test Dₓₓ == second_derivative(g_1D,op.innerStencil,op.closureStencils,1) | |
19 @test Dₓₓ isa VolumeOperator | |
20 end | |
21 @testset "2D" begin | |
22 Dₓₓ = second_derivative(g_2D,op.innerStencil,op.closureStencils,1) | |
23 D2 = second_derivative(g_1D,op.innerStencil,op.closureStencils) | |
24 I = IdentityMapping{Float64}(size(g_2D)[2]) | |
25 @test Dₓₓ == D2⊗I | |
26 @test Dₓₓ isa TensorMapping{T,2,2} where T | |
27 end | |
28 end | |
29 | |
30 # Exact differentiation is measured point-wise. In other cases | |
31 # the error is measured in the l2-norm. | |
32 @testset "Accuracy" begin | |
33 @testset "1D" begin | |
34 l2(v) = sqrt(spacing(g_1D)[1]*sum(v.^2)); | |
35 monomials = () | |
36 maxOrder = 4; | |
37 for i = 0:maxOrder-1 | |
38 f_i(x) = 1/factorial(i)*x^i | |
39 monomials = (monomials...,evalOn(g_1D,f_i)) | |
40 end | |
41 v = evalOn(g_1D,x -> sin(x)) | |
42 vₓₓ = evalOn(g_1D,x -> -sin(x)) | |
43 | |
44 # 2nd order interior stencil, 1nd order boundary stencil, | |
45 # implies that L*v should be exact for monomials up to order 2. | |
46 @testset "2nd order" begin | |
47 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
48 Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) | |
49 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
50 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
51 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | |
52 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 | |
53 end | |
54 | |
55 # 4th order interior stencil, 2nd order boundary stencil, | |
56 # implies that L*v should be exact for monomials up to order 3. | |
57 @testset "4th order" begin | |
58 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
59 Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) | |
60 # NOTE: high tolerances for checking the "exact" differentiation | |
61 # due to accumulation of round-off errors/cancellation errors? | |
62 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
63 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
64 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | |
65 @test Dₓₓ*monomials[4] ≈ monomials[2] atol = 5e-10 | |
66 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-4 norm = l2 | |
67 end | |
68 end | |
69 | |
70 @testset "2D" begin | |
71 l2(v) = sqrt(prod(spacing(g_2D))*sum(v.^2)); | |
72 binomials = () | |
73 maxOrder = 4; | |
74 for i = 0:maxOrder-1 | |
75 f_i(x,y) = 1/factorial(i)*y^i + x^i | |
76 binomials = (binomials...,evalOn(g_2D,f_i)) | |
77 end | |
78 v = evalOn(g_2D, (x,y) -> sin(x)+cos(y)) | |
79 v_yy = evalOn(g_2D,(x,y) -> -cos(y)) | |
80 | |
81 # 2nd order interior stencil, 1st order boundary stencil, | |
82 # implies that L*v should be exact for binomials up to order 2. | |
83 @testset "2nd order" begin | |
84 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
85 Dyy = second_derivative(g_2D,op.innerStencil,op.closureStencils,2) | |
86 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
87 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
88 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | |
89 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 | |
90 end | |
91 | |
92 # 4th order interior stencil, 2nd order boundary stencil, | |
93 # implies that L*v should be exact for binomials up to order 3. | |
94 @testset "4th order" begin | |
95 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
96 Dyy = second_derivative(g_2D,op.innerStencil,op.closureStencils,2) | |
97 # NOTE: high tolerances for checking the "exact" differentiation | |
98 # due to accumulation of round-off errors/cancellation errors? | |
99 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
100 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
101 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | |
102 @test Dyy*binomials[4] ≈ evalOn(g_2D,(x,y)->y) atol = 5e-9 | |
103 @test Dyy*v ≈ v_yy rtol = 5e-4 norm = l2 | |
104 end | |
105 end | |
106 end | |
107 end |