Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/quadratures/quadrature.jl @ 681:43cf58c69f91 feature/boundary_quads
Remove methods boundary_quadrature, and instead specialize quadrature on a zero-dimensional grid to return the IdentityMapping
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 08 Feb 2021 18:44:44 +0100 |
parents | 1ce3a104afc8 |
children | 728fd5a2455a |
comparison
equal
deleted
inserted
replaced
680:1d3e29ffc6c6 | 681:43cf58c69f91 |
---|---|
10 interior stencil with weight 1 is used. | 10 interior stencil with weight 1 is used. |
11 | 11 |
12 On a one-dimensional `grid`, `H` is a `VolumeOperator`. On a multi-dimensional | 12 On a one-dimensional `grid`, `H` is a `VolumeOperator`. On a multi-dimensional |
13 `grid`, `H` is the outer product of the 1-dimensional quadrature operators in | 13 `grid`, `H` is the outer product of the 1-dimensional quadrature operators in |
14 each coordinate direction. Also see the documentation of | 14 each coordinate direction. Also see the documentation of |
15 `SbpOperators.volume_operator(...)` for more details. | 15 `SbpOperators.volume_operator(...)` for more details. On 0-dimensional `grid`, |
16 `H` is a 0-dimensional `IdentityMapping`. | |
16 """ | 17 """ |
17 function quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils) where Dim | 18 function quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils) |
18 h = spacing(grid) | 19 h = spacing(grid) |
19 H = SbpOperators.volume_operator(grid, scale(inner_stencil,h[1]), scale.(closure_stencils,h[1]), even, 1) | 20 H = SbpOperators.volume_operator(grid, scale(inner_stencil,h[1]), scale.(closure_stencils,h[1]), even, 1) |
20 for i ∈ 2:dimension(grid) | 21 for i ∈ 2:dimension(grid) |
21 Hᵢ = SbpOperators.volume_operator(grid, scale(inner_stencil,h[i]), scale.(closure_stencils,h[i]), even, i) | 22 Hᵢ = SbpOperators.volume_operator(grid, scale(inner_stencil,h[i]), scale.(closure_stencils,h[i]), even, i) |
22 H = H∘Hᵢ | 23 H = H∘Hᵢ |
23 end | 24 end |
24 return H | 25 return H |
25 end | 26 end |
26 export quadrature | 27 export quadrature |
27 | 28 |
28 function quadrature(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T}}) where {M,T} | 29 quadrature(grid::EquidistantGrid{0,T}, inner_stencil, closure_stencils) where T = IdentityMapping{T}() |
30 #TODO: Consider changing the interface of volume_operator to volume_operator(grid,closure_stencils,inner_stencil) | |
31 # in order to allow for having quadrature(grid, closure_stencils, inner_stencil = CenteredStencil(one(T))) | |
32 # Then the below function can be removed. | |
33 function quadrature(grid::EquidistantGrid{Dim,T}, closure_stencils) where {Dim,T} | |
29 inner_stencil = CenteredStencil(one(T)) | 34 inner_stencil = CenteredStencil(one(T)) |
30 return quadrature(grid, inner_stencil, closure_stencils) | 35 return quadrature(grid, inner_stencil, closure_stencils) |
31 end | 36 end |
32 | |
33 """ | |
34 boundary_quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils, id::CartesianBoundary) | |
35 boundary_quadrature(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, id) | |
36 boundary_quadrature(grid::EquidistantGrid, closure_stencils, id) | |
37 | |
38 Creates the lower-dimensional quadrature operator associated with the boundary | |
39 of `grid` specified by `id`. The quadrature operator is defined on the grid | |
40 spanned by the dimensions orthogonal to the boundary coordinate direction. | |
41 If the dimension of `grid` is 1, then the boundary quadrature is the 0-dimensional | |
42 `IdentityMapping`. If `inner_stencil` is omitted a central interior stencil with | |
43 weight 1 is used. | |
44 """ | |
45 function boundary_quadrature(grid::EquidistantGrid, inner_stencil, closure_stencils, id::CartesianBoundary) | |
46 return quadrature(orthogonal_grid(grid,dim(id)),inner_stencil,closure_stencils) | |
47 end | |
48 export boundary_quadrature | |
49 | |
50 function boundary_quadrature(grid::EquidistantGrid{1}, inner_stencil::Stencil{T}, closure_stencils::NTuple{M,Stencil{T}}, id::CartesianBoundary{1}) where {M,T} | |
51 return IdentityMapping{T}() | |
52 end | |
53 | |
54 function boundary_quadrature(grid::EquidistantGrid, closure_stencils::NTuple{M,Stencil{T}}, id::CartesianBoundary) where {M,T} | |
55 inner_stencil = CenteredStencil(one(T)) | |
56 return boundary_quadrature(grid,inner_stencil,closure_stencils,id) | |
57 end | |
58 | |
59 """ | |
60 orthogonal_grid(grid,dim) | |
61 | |
62 Creates the lower-dimensional restriciton of `grid` spanned by the dimensions | |
63 orthogonal to `dim`. | |
64 """ | |
65 function orthogonal_grid(grid,dim) | |
66 dims = collect(1:dimension(grid)) | |
67 orth_dims = dims[dims .!= dim] | |
68 return restrict(grid,orth_dims) | |
69 end |