Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/laplace/secondderivative.jl @ 556:37a81dad36b9
Merge refactor/tensor_index_coupling
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 29 Nov 2020 21:18:45 +0100 |
parents | 9330338d6ab5 |
children | e71f2f81b5f8 |
comparison
equal
deleted
inserted
replaced
540:013ca4892540 | 556:37a81dad36b9 |
---|---|
18 end | 18 end |
19 | 19 |
20 LazyTensors.range_size(D2::SecondDerivative) = D2.size | 20 LazyTensors.range_size(D2::SecondDerivative) = D2.size |
21 LazyTensors.domain_size(D2::SecondDerivative) = D2.size | 21 LazyTensors.domain_size(D2::SecondDerivative) = D2.size |
22 | 22 |
23 #TODO: The 1D tensor mappings should not have to dispatch on 1D tuples if we write LazyTensor.apply for vararg right?!?! | |
24 # Currently have to index the Tuple{Index} in each method in order to call the stencil methods which is ugly. | |
25 # I thought I::Vararg{Index,R} fell back to just Index for R = 1 | |
26 | |
27 # Apply for different regions Lower/Interior/Upper or Unknown region | 23 # Apply for different regions Lower/Interior/Upper or Unknown region |
28 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Lower}) where T | 24 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Lower}) where T |
29 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(I)], v, Int(I)) | 25 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(i)], v, Int(i)) |
30 end | 26 end |
31 | 27 |
32 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Interior}) where T | 28 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Interior}) where T |
33 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(I)) | 29 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(i)) |
34 end | 30 end |
35 | 31 |
36 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Upper}) where T | 32 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Upper}) where T |
37 N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) | 33 N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) |
38 return @inbounds D2.h_inv*D2.h_inv*apply_stencil_backwards(D2.closureStencils[N-Int(I)+1], v, Int(I)) | 34 return @inbounds D2.h_inv*D2.h_inv*apply_stencil_backwards(D2.closureStencils[N-Int(i)+1], v, Int(i)) |
39 end | 35 end |
40 | 36 |
41 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, index::Index{Unknown}) where T | 37 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i) where T |
42 N = length(v) # TODO: Use domain_size here instead? | 38 N = length(v) # TODO: Use domain_size here instead? |
43 r = getregion(Int(index), closuresize(D2), N) | 39 r = getregion(i, closuresize(D2), N) |
44 I = Index(Int(index), r) | 40 return LazyTensors.apply(D2, v, Index(i, r)) |
45 return LazyTensors.apply(D2, v, I) | |
46 end | 41 end |
47 | 42 |
48 closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} = M | 43 closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} = M |