Mercurial > repos > public > sbplib_julia
comparison test/testLazyTensors.jl @ 345:2fcc960836c6
Merge branch refactor/combine_to_one_package.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 26 Sep 2020 15:22:13 +0200 |
parents | 2b0c9b30ea3b |
children | 7fe43d902a27 |
comparison
equal
deleted
inserted
replaced
343:e12c9a866513 | 345:2fcc960836c6 |
---|---|
1 using Test | |
2 using Sbplib.LazyTensors | |
3 using Sbplib.RegionIndices | |
4 | |
5 @testset "LazyTensors" begin | |
6 | |
7 @testset "Generic Mapping methods" begin | |
8 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | |
9 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Index{<:Region}}) where {T,R,D} = :apply | |
10 @test range_dim(DummyMapping{Int,2,3}()) == 2 | |
11 @test domain_dim(DummyMapping{Int,2,3}()) == 3 | |
12 @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),(Index{Unknown}(0),Index{Unknown}(0))) == :apply | |
13 end | |
14 | |
15 @testset "Generic Operator methods" begin | |
16 struct DummyOperator{T,D} <: TensorOperator{T,D} end | |
17 @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5) | |
18 @test domain_size(DummyOperator{Float64, 3}(), (3,3,1)) == (3,3,1) | |
19 end | |
20 | |
21 @testset "Mapping transpose" begin | |
22 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | |
23 | |
24 LazyTensors.apply(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},R}) where {T,R,D} = :apply | |
25 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},D}) where {T,R,D} = :apply_transpose | |
26 | |
27 LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = :range_size | |
28 LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = :domain_size | |
29 | |
30 m = DummyMapping{Float64,2,3}() | |
31 I = Index{Unknown}(0) | |
32 @test m' isa TensorMapping{Float64, 3,2} | |
33 @test m'' == m | |
34 @test apply(m',zeros(Float64,(0,0)), I, I, I) == :apply_transpose | |
35 @test apply(m'',zeros(Float64,(0,0,0)), I, I) == :apply | |
36 @test apply_transpose(m', zeros(Float64,(0,0,0)), I, I) == :apply | |
37 | |
38 @test range_size(m', (0,0)) == :domain_size | |
39 @test domain_size(m', (0,0,0)) == :range_size | |
40 end | |
41 | |
42 @testset "TensorApplication" begin | |
43 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | |
44 | |
45 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::Vararg{Index{<:Region},R}) where {T,R,D} = (:apply,v,i) | |
46 LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = 2 .* domain_size | |
47 LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = range_size.÷2 | |
48 | |
49 | |
50 m = DummyMapping{Int, 1, 1}() | |
51 v = [0,1,2] | |
52 @test m*v isa AbstractVector{Int} | |
53 @test size(m*v) == 2 .*size(v) | |
54 @test (m*v)[Index{Upper}(0)] == (:apply,v,(Index{Upper}(0),)) | |
55 @test (m*v)[0] == (:apply,v,(Index{Unknown}(0),)) | |
56 @test m*m*v isa AbstractVector{Int} | |
57 @test (m*m*v)[Index{Upper}(1)] == (:apply,m*v,(Index{Upper}(1),)) | |
58 @test (m*m*v)[1] == (:apply,m*v,(Index{Unknown}(1),)) | |
59 @test (m*m*v)[Index{Interior}(3)] == (:apply,m*v,(Index{Interior}(3),)) | |
60 @test (m*m*v)[3] == (:apply,m*v,(Index{Unknown}(3),)) | |
61 @test (m*m*v)[Index{Lower}(6)] == (:apply,m*v,(Index{Lower}(6),)) | |
62 @test (m*m*v)[6] == (:apply,m*v,(Index{Unknown}(6),)) | |
63 @test_broken BoundsError == (m*m*v)[0] | |
64 @test_broken BoundsError == (m*m*v)[7] | |
65 | |
66 m = DummyMapping{Int, 2, 1}() | |
67 @test_throws MethodError m*ones(Int,2,2) | |
68 @test_throws MethodError m*m*v | |
69 | |
70 m = DummyMapping{Float64, 2, 2}() | |
71 v = ones(3,3) | |
72 I = (Index{Lower}(1),Index{Interior}(2)); | |
73 @test size(m*v) == 2 .*size(v) | |
74 @test (m*v)[I] == (:apply,v,I) | |
75 | |
76 struct ScalingOperator{T,D} <: TensorOperator{T,D} | |
77 λ::T | |
78 end | |
79 | |
80 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I] | |
81 | |
82 m = ScalingOperator{Int,1}(2) | |
83 v = [1,2,3] | |
84 @test m*v isa AbstractVector | |
85 @test m*v == [2,4,6] | |
86 | |
87 m = ScalingOperator{Int,2}(2) | |
88 v = [[1 2];[3 4]] | |
89 @test m*v == [[2 4];[6 8]] | |
90 I = (Index{Upper}(2),Index{Lower}(1)) | |
91 @test (m*v)[I] == 6 | |
92 end | |
93 | |
94 @testset "TensorMapping binary operations" begin | |
95 struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D} | |
96 λ::T | |
97 end | |
98 | |
99 LazyTensors.apply(m::ScalarMapping{T,R,D}, v, I::Vararg{Index{<:Region}}) where {T,R,D} = m.λ*v[I...] | |
100 LazyTensors.range_size(m::ScalarMapping, domain_size) = domain_size | |
101 LazyTensors.domain_size(m::ScalarMapping, range_sizes) = range_sizes | |
102 | |
103 A = ScalarMapping{Float64,1,1}(2.0) | |
104 B = ScalarMapping{Float64,1,1}(3.0) | |
105 | |
106 v = [1.1,1.2,1.3] | |
107 for i ∈ eachindex(v) | |
108 @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] | |
109 end | |
110 | |
111 for i ∈ eachindex(v) | |
112 @test ((A-B)*v)[i] == 2*v[i] - 3*v[i] | |
113 end | |
114 | |
115 @test range_size(A+B, (3,)) == range_size(A, (3,)) == range_size(B,(3,)) | |
116 @test domain_size(A+B, (3,)) == domain_size(A, (3,)) == domain_size(B,(3,)) | |
117 end | |
118 | |
119 @testset "LazyArray" begin | |
120 @testset "LazyConstantArray" begin | |
121 @test LazyTensors.LazyConstantArray(3,(3,2)) isa LazyArray{Int,2} | |
122 | |
123 lca = LazyTensors.LazyConstantArray(3.0,(3,2)) | |
124 @test eltype(lca) == Float64 | |
125 @test ndims(lca) == 2 | |
126 @test size(lca) == (3,2) | |
127 @test lca[2] == 3.0 | |
128 end | |
129 struct DummyArray{T,D, T1<:AbstractArray{T,D}} <: LazyArray{T,D} | |
130 data::T1 | |
131 end | |
132 Base.size(v::DummyArray) = size(v.data) | |
133 Base.getindex(v::DummyArray{T,D}, I::Vararg{Int,D}) where {T,D} = v.data[I...] | |
134 | |
135 # Test lazy operations | |
136 v1 = [1, 2.3, 4] | |
137 v2 = [1., 2, 3] | |
138 s = 3.4 | |
139 r_add_v = v1 .+ v2 | |
140 r_sub_v = v1 .- v2 | |
141 r_times_v = v1 .* v2 | |
142 r_div_v = v1 ./ v2 | |
143 r_add_s = v1 .+ s | |
144 r_sub_s = v1 .- s | |
145 r_times_s = v1 .* s | |
146 r_div_s = v1 ./ s | |
147 @test isa(v1 +̃ v2, LazyArray) | |
148 @test isa(v1 -̃ v2, LazyArray) | |
149 @test isa(v1 *̃ v2, LazyArray) | |
150 @test isa(v1 /̃ v2, LazyArray) | |
151 @test isa(v1 +̃ s, LazyArray) | |
152 @test isa(v1 -̃ s, LazyArray) | |
153 @test isa(v1 *̃ s, LazyArray) | |
154 @test isa(v1 /̃ s, LazyArray) | |
155 @test isa(s +̃ v1, LazyArray) | |
156 @test isa(s -̃ v1, LazyArray) | |
157 @test isa(s *̃ v1, LazyArray) | |
158 @test isa(s /̃ v1, LazyArray) | |
159 for i ∈ eachindex(v1) | |
160 @test (v1 +̃ v2)[i] == r_add_v[i] | |
161 @test (v1 -̃ v2)[i] == r_sub_v[i] | |
162 @test (v1 *̃ v2)[i] == r_times_v[i] | |
163 @test (v1 /̃ v2)[i] == r_div_v[i] | |
164 @test (v1 +̃ s)[i] == r_add_s[i] | |
165 @test (v1 -̃ s)[i] == r_sub_s[i] | |
166 @test (v1 *̃ s)[i] == r_times_s[i] | |
167 @test (v1 /̃ s)[i] == r_div_s[i] | |
168 @test (s +̃ v1)[i] == r_add_s[i] | |
169 @test (s -̃ v1)[i] == -r_sub_s[i] | |
170 @test (s *̃ v1)[i] == r_times_s[i] | |
171 @test (s /̃ v1)[i] == 1/r_div_s[i] | |
172 end | |
173 @test_throws BoundsError (v1 +̃ v2)[4] | |
174 v2 = [1., 2, 3, 4] | |
175 # Test that size of arrays is asserted when not specified inbounds | |
176 @test_throws DimensionMismatch v1 +̃ v2 | |
177 | |
178 # Test operations on LazyArray | |
179 v1 = DummyArray([1, 2.3, 4]) | |
180 v2 = [1., 2, 3] | |
181 @test isa(v1 + v2, LazyArray) | |
182 @test isa(v2 + v1, LazyArray) | |
183 @test isa(v1 - v2, LazyArray) | |
184 @test isa(v2 - v1, LazyArray) | |
185 for i ∈ eachindex(v2) | |
186 @test (v1 + v2)[i] == (v2 + v1)[i] == r_add_v[i] | |
187 @test (v1 - v2)[i] == -(v2 - v1)[i] == r_sub_v[i] | |
188 end | |
189 @test_throws BoundsError (v1 + v2)[4] | |
190 v2 = [1., 2, 3, 4] | |
191 # Test that size of arrays is asserted when not specified inbounds | |
192 @test_throws DimensionMismatch v1 + v2 | |
193 end | |
194 | |
195 end |