comparison src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl @ 504:21fba50cb5b0 feature/quadrature_as_outer_product

Use LazyOuterProduct to construct multi-dimensional quadratures. This change allwed to: - Replace the types Quadrature and InverseQuadrature by functions returning outer products of the 1D operators. - Avoid convoluted naming of types. DiagonalInnerProduct is now renamed to DiagonalQuadrature, similarly for InverseDiagonalInnerProduct.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Sat, 07 Nov 2020 13:07:31 +0100
parents src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl@0d93d406c222
children c2f991b819fc
comparison
equal deleted inserted replaced
503:fbbb3733650c 504:21fba50cb5b0
1 """
2 inverse_diagonal_quadrature(g,quadrature_closure)
3
4 Constructs the diagonal quadrature inverse operator `Qi` on a grid of `Dim` dimensions as
5 a `TensorMapping`. The one-dimensional operator is a InverseDiagonalQuadrature, while
6 the multi-dimensional operator is the outer-product of the one-dimensional operators
7 in each coordinate direction.
8 """
9 function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
10 Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure)
11 for i ∈ 2:Dim
12 Hi = Hi⊗InverseDiagonalQuadrature(restrict(g,i), quadrature_closure)
13 end
14 return Hi
15 end
16 export inverse_diagonal_quadrature
17
18
19 """
20 InverseDiagonalQuadrature{Dim,T<:Real,M} <: TensorMapping{T,1,1}
21
22 Implements the inverse diagonal inner product operator `Hi` of as a 1D TensorOperator
23 """
24 struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1}
25 h_inv::T
26 closure::NTuple{M,T}
27 size::Tuple{Int}
28 end
29 export InverseDiagonalQuadrature
30
31 function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
32 return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g))
33 end
34
35
36 LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size
37 LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size
38
39
40 function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T
41 return @inbounds Hi.h_inv*Hi.closure[Int(I)]*v[Int(I)]
42 end
43
44 function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Upper}) where T
45 N = length(v);
46 return @inbounds Hi.h_inv*Hi.closure[N-Int(I)+1]*v[Int(I)]
47 end
48
49 function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Interior}) where T
50 return @inbounds Hi.h_inv*v[Int(I)]
51 end
52
53 function LazyTensors.apply(Hi::InverseDiagonalQuadrature, v::AbstractVector{T}, index::Index{Unknown}) where T
54 N = length(v);
55 r = getregion(Int(index), closuresize(Hi), N)
56 i = Index(Int(index), r)
57 return LazyTensors.apply(Hi, v, i)
58 end
59
60 LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T = LazyTensors.apply(Hi,v,I)
61
62
63 closuresize(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} = M
64 export closuresize