comparison src/LazyTensors/lazy_tensor_operations.jl @ 999:20cb83efb3f1 refactor/lazy_tensors

More operator definitions to top file
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 18 Mar 2022 21:43:38 +0100
parents 390dfc3db4b1
children 1091ac8c69ad
comparison
equal deleted inserted replaced
998:390dfc3db4b1 999:20cb83efb3f1
1 # TBD: Is there a good way to split this file? 1 # TBD: Is there a good way to split this file?
2 # TODO: Split out functions for composition
3 # TODO: We need to be really careful about good error messages.
2 4
3 """ 5 """
4 LazyTensorApplication{T,R,D} <: LazyArray{T,R} 6 LazyTensorApplication{T,R,D} <: LazyArray{T,R}
5 7
6 Struct for lazy application of a LazyTensor. Created using `*`. 8 Struct for lazy application of a LazyTensor. Created using `*`.
24 Base.getindex(ta::LazyTensorApplication{T,R}, I::Vararg{Any,R}) where {T,R} = apply(ta.t, ta.o, I...) 26 Base.getindex(ta::LazyTensorApplication{T,R}, I::Vararg{Any,R}) where {T,R} = apply(ta.t, ta.o, I...)
25 Base.getindex(ta::LazyTensorApplication{T,1}, I::CartesianIndex{1}) where {T} = apply(ta.t, ta.o, I.I...) # Would otherwise be caught in the previous method. 27 Base.getindex(ta::LazyTensorApplication{T,1}, I::CartesianIndex{1}) where {T} = apply(ta.t, ta.o, I.I...) # Would otherwise be caught in the previous method.
26 Base.size(ta::LazyTensorApplication) = range_size(ta.t) 28 Base.size(ta::LazyTensorApplication) = range_size(ta.t)
27 # TODO: What else is needed to implement the AbstractArray interface? 29 # TODO: What else is needed to implement the AbstractArray interface?
28 30
29 Base.:*(a::LazyTensor, v::AbstractArray) = LazyTensorApplication(a,v)
30 Base.:*(a::LazyTensor, b::LazyTensor) = throw(MethodError(Base.:*,(a,b)))
31 Base.:*(a::LazyTensor, args::Union{LazyTensor, AbstractArray}...) = foldr(*,(a,args...))
32
33 # # We need the associativity to be a→b→c = a→(b→c), which is the case for '→'
34 # # Should we overload some other infix binary opesrator?
35 # →(tm::LazyTensor{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorApplication(tm,o)
36 # TODO: We need to be really careful about good error messages.
37 # For example what happens if you try to multiply LazyTensorApplication with a LazyTensor(wrong order)?
38 31
39 """ 32 """
40 LazyTensorTranspose{T,R,D} <: LazyTensor{T,D,R} 33 LazyTensorTranspose{T,R,D} <: LazyTensor{T,D,R}
41 34
42 Struct for lazy transpose of a LazyTensor. 35 Struct for lazy transpose of a LazyTensor.
58 apply_transpose(tmt::LazyTensorTranspose{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmt.tm, v, I...) 51 apply_transpose(tmt::LazyTensorTranspose{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmt.tm, v, I...)
59 52
60 range_size(tmt::LazyTensorTranspose) = domain_size(tmt.tm) 53 range_size(tmt::LazyTensorTranspose) = domain_size(tmt.tm)
61 domain_size(tmt::LazyTensorTranspose) = range_size(tmt.tm) 54 domain_size(tmt::LazyTensorTranspose) = range_size(tmt.tm)
62 55
63 56 # TODO: Rename this
64 struct LazyLazyTensorBinaryOperation{Op,T,R,D,T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R} 57 struct LazyLazyTensorBinaryOperation{Op,T,R,D,T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R}
65 tm1::T1 58 tm1::T1
66 tm2::T2 59 tm2::T2
67 60
68 @inline function LazyLazyTensorBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} 61 @inline function LazyLazyTensorBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}}
75 apply(tmBinOp::LazyLazyTensorBinaryOperation{:-,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...) 68 apply(tmBinOp::LazyLazyTensorBinaryOperation{:-,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...)
76 69
77 range_size(tmBinOp::LazyLazyTensorBinaryOperation) = range_size(tmBinOp.tm1) 70 range_size(tmBinOp::LazyLazyTensorBinaryOperation) = range_size(tmBinOp.tm1)
78 domain_size(tmBinOp::LazyLazyTensorBinaryOperation) = domain_size(tmBinOp.tm1) 71 domain_size(tmBinOp::LazyLazyTensorBinaryOperation) = domain_size(tmBinOp.tm1)
79 72
80 Base.:+(tm1::LazyTensor{T,R,D}, tm2::LazyTensor{T,R,D}) where {T,R,D} = LazyLazyTensorBinaryOperation{:+,T,R,D}(tm1,tm2)
81 Base.:-(tm1::LazyTensor{T,R,D}, tm2::LazyTensor{T,R,D}) where {T,R,D} = LazyLazyTensorBinaryOperation{:-,T,R,D}(tm1,tm2)
82 73
83 """ 74 """
84 LazyTensorComposition{T,R,K,D} 75 LazyTensorComposition{T,R,K,D}
85 76
86 Lazily compose two `LazyTensor`s, so that they can be handled as a single `LazyTensor`. 77 Lazily compose two `LazyTensor`s, so that they can be handled as a single `LazyTensor`.
104 95
105 function apply_transpose(c::LazyTensorComposition{T,R,K,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,K,D} 96 function apply_transpose(c::LazyTensorComposition{T,R,K,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,K,D}
106 apply_transpose(c.t2, c.t1'*v, I...) 97 apply_transpose(c.t2, c.t1'*v, I...)
107 end 98 end
108 99
109 Base.@propagate_inbounds Base.:∘(s::LazyTensor, t::LazyTensor) = LazyTensorComposition(s,t)
110 100
111 """ 101 """
112 LazyLinearMap{T,R,D,...}(A, range_indicies, domain_indicies) 102 LazyLinearMap{T,R,D,...}(A, range_indicies, domain_indicies)
113 103
114 LazyTensor defined by the AbstractArray A. `range_indicies` and `domain_indicies` define which indicies of A should 104 LazyTensor defined by the AbstractArray A. `range_indicies` and `domain_indicies` define which indicies of A should
186 # Specialization for the case where tm is an IdentityTensor. Required to resolve ambiguity. 176 # Specialization for the case where tm is an IdentityTensor. Required to resolve ambiguity.
187 function LazyTensorComposition(tm::IdentityTensor{T,D}, tmi::IdentityTensor{T,D}) where {T,D} 177 function LazyTensorComposition(tm::IdentityTensor{T,D}, tmi::IdentityTensor{T,D}) where {T,D}
188 @boundscheck check_domain_size(tm, range_size(tmi)) 178 @boundscheck check_domain_size(tm, range_size(tmi))
189 return tmi 179 return tmi
190 end 180 end
191 # TODO: Move the operator definitions to one place
192 181
193 """ 182 """
194 ScalingTensor{T,D} <: LazyTensor{T,D,D} 183 ScalingTensor{T,D} <: LazyTensor{T,D,D}
195 184
196 A lazy tensor that scales its input with `λ`. 185 A lazy tensor that scales its input with `λ`.
349 LazyOuterProduct(t1::LazyTensor, t2::IdentityTensor) = InflatedLazyTensor(t1, t2) 338 LazyOuterProduct(t1::LazyTensor, t2::IdentityTensor) = InflatedLazyTensor(t1, t2)
350 LazyOuterProduct(t1::IdentityTensor, t2::LazyTensor) = InflatedLazyTensor(t1, t2) 339 LazyOuterProduct(t1::IdentityTensor, t2::LazyTensor) = InflatedLazyTensor(t1, t2)
351 340
352 LazyOuterProduct(tms::Vararg{LazyTensor}) = foldl(LazyOuterProduct, tms) 341 LazyOuterProduct(tms::Vararg{LazyTensor}) = foldl(LazyOuterProduct, tms)
353 342
354 ⊗(a::LazyTensor, b::LazyTensor) = LazyOuterProduct(a,b)
355
356 343
357 function check_domain_size(tm::LazyTensor, sz) 344 function check_domain_size(tm::LazyTensor, sz)
358 if domain_size(tm) != sz 345 if domain_size(tm) != sz
359 throw(SizeMismatch(tm,sz)) 346 throw(SizeMismatch(tm,sz))
360 end 347 end