Mercurial > repos > public > sbplib_julia
comparison test/LazyTensors/lazy_tensor_operations_test.jl @ 995:1ba8a398af9c refactor/lazy_tensors
Rename types
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 18 Mar 2022 21:14:47 +0100 |
parents | 2f9beee56a4c |
children | 20c376dffe84 |
comparison
equal
deleted
inserted
replaced
994:55ab7801c45f | 995:1ba8a398af9c |
---|---|
3 using Sbplib.RegionIndices | 3 using Sbplib.RegionIndices |
4 | 4 |
5 using Tullio | 5 using Tullio |
6 | 6 |
7 @testset "Mapping transpose" begin | 7 @testset "Mapping transpose" begin |
8 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | 8 struct DummyMapping{T,R,D} <: LazyTensor{T,R,D} end |
9 | 9 |
10 LazyTensors.apply(m::DummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply | 10 LazyTensors.apply(m::DummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply |
11 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose | 11 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose |
12 | 12 |
13 LazyTensors.range_size(m::DummyMapping) = :range_size | 13 LazyTensors.range_size(m::DummyMapping) = :range_size |
14 LazyTensors.domain_size(m::DummyMapping) = :domain_size | 14 LazyTensors.domain_size(m::DummyMapping) = :domain_size |
15 | 15 |
16 m = DummyMapping{Float64,2,3}() | 16 m = DummyMapping{Float64,2,3}() |
17 @test m' isa TensorMapping{Float64, 3,2} | 17 @test m' isa LazyTensor{Float64, 3,2} |
18 @test m'' == m | 18 @test m'' == m |
19 @test apply(m',zeros(Float64,(0,0)), 0, 0, 0) == :apply_transpose | 19 @test apply(m',zeros(Float64,(0,0)), 0, 0, 0) == :apply_transpose |
20 @test apply(m'',zeros(Float64,(0,0,0)), 0, 0) == :apply | 20 @test apply(m'',zeros(Float64,(0,0,0)), 0, 0) == :apply |
21 @test apply_transpose(m', zeros(Float64,(0,0,0)), 0, 0) == :apply | 21 @test apply_transpose(m', zeros(Float64,(0,0,0)), 0, 0) == :apply |
22 | 22 |
23 @test range_size(m') == :domain_size | 23 @test range_size(m') == :domain_size |
24 @test domain_size(m') == :range_size | 24 @test domain_size(m') == :range_size |
25 end | 25 end |
26 | 26 |
27 @testset "TensorApplication" begin | 27 @testset "TensorApplication" begin |
28 struct SizeDoublingMapping{T,R,D} <: TensorMapping{T,R,D} | 28 struct SizeDoublingMapping{T,R,D} <: LazyTensor{T,R,D} |
29 domain_size::NTuple{D,Int} | 29 domain_size::NTuple{D,Int} |
30 end | 30 end |
31 | 31 |
32 LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i) | 32 LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i) |
33 LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size | 33 LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size |
106 @inferred m*v | 106 @inferred m*v |
107 @inferred (m*v)[1] | 107 @inferred (m*v)[1] |
108 end | 108 end |
109 end | 109 end |
110 | 110 |
111 @testset "TensorMapping binary operations" begin | 111 @testset "LazyTensor binary operations" begin |
112 A = ScalingTensor(2.0, (3,)) | 112 A = ScalingTensor(2.0, (3,)) |
113 B = ScalingTensor(3.0, (3,)) | 113 B = ScalingTensor(3.0, (3,)) |
114 | 114 |
115 v = [1.1,1.2,1.3] | 115 v = [1.1,1.2,1.3] |
116 for i ∈ eachindex(v) | 116 for i ∈ eachindex(v) |
129 | 129 |
130 @test ((A+B)*ComplexF64[1.1,1.2,1.3])[3] isa ComplexF64 | 130 @test ((A+B)*ComplexF64[1.1,1.2,1.3])[3] isa ComplexF64 |
131 end | 131 end |
132 | 132 |
133 | 133 |
134 @testset "TensorMappingComposition" begin | 134 @testset "LazyTensorComposition" begin |
135 A = rand(2,3) | 135 A = rand(2,3) |
136 B = rand(3,4) | 136 B = rand(3,4) |
137 | 137 |
138 Ã = LazyLinearMap(A, (1,), (2,)) | 138 Ã = LazyLinearMap(A, (1,), (2,)) |
139 B̃ = LazyLinearMap(B, (1,), (2,)) | 139 B̃ = LazyLinearMap(B, (1,), (2,)) |
140 | 140 |
141 @test Ã∘B̃ isa TensorMappingComposition | 141 @test Ã∘B̃ isa LazyTensorComposition |
142 @test range_size(Ã∘B̃) == (2,) | 142 @test range_size(Ã∘B̃) == (2,) |
143 @test domain_size(Ã∘B̃) == (4,) | 143 @test domain_size(Ã∘B̃) == (4,) |
144 @test_throws SizeMismatch B̃∘Ã | 144 @test_throws SizeMismatch B̃∘Ã |
145 | 145 |
146 # @test @inbounds B̃∘Ã # Should not error even though dimensions don't match. (Since ]test runs with forced boundschecking this is currently not testable 2020-10-16) | 146 # @test @inbounds B̃∘Ã # Should not error even though dimensions don't match. (Since ]test runs with forced boundschecking this is currently not testable 2020-10-16) |
162 Ã = LazyLinearMap(A, (1,), (2,)) | 162 Ã = LazyLinearMap(A, (1,), (2,)) |
163 v = rand(4) | 163 v = rand(4) |
164 w = rand(3) | 164 w = rand(3) |
165 | 165 |
166 @test à isa LazyLinearMap{T,1,1} where T | 166 @test à isa LazyLinearMap{T,1,1} where T |
167 @test à isa TensorMapping{T,1,1} where T | 167 @test à isa LazyTensor{T,1,1} where T |
168 @test range_size(Ã) == (3,) | 168 @test range_size(Ã) == (3,) |
169 @test domain_size(Ã) == (4,) | 169 @test domain_size(Ã) == (4,) |
170 | 170 |
171 @test Ã*ones(4) ≈ A*ones(4) atol=5e-13 | 171 @test Ã*ones(4) ≈ A*ones(4) atol=5e-13 |
172 @test Ã*v ≈ A*v atol=5e-13 | 172 @test Ã*v ≈ A*v atol=5e-13 |
181 B̃ = LazyLinearMap(B, (1,2), (3,)) | 181 B̃ = LazyLinearMap(B, (1,2), (3,)) |
182 v = rand(2) | 182 v = rand(2) |
183 | 183 |
184 @test range_size(B̃) == (3,4) | 184 @test range_size(B̃) == (3,4) |
185 @test domain_size(B̃) == (2,) | 185 @test domain_size(B̃) == (2,) |
186 @test B̃ isa TensorMapping{T,2,1} where T | 186 @test B̃ isa LazyTensor{T,2,1} where T |
187 @test B̃*ones(2) ≈ B[:,:,1] + B[:,:,2] atol=5e-13 | 187 @test B̃*ones(2) ≈ B[:,:,1] + B[:,:,2] atol=5e-13 |
188 @test B̃*v ≈ B[:,:,1]*v[1] + B[:,:,2]*v[2] atol=5e-13 | 188 @test B̃*v ≈ B[:,:,1]*v[1] + B[:,:,2]*v[2] atol=5e-13 |
189 | 189 |
190 # Map matrices of size (3,2) to vectors of size 4 | 190 # Map matrices of size (3,2) to vectors of size 4 |
191 B̃ = LazyLinearMap(B, (2,), (1,3)) | 191 B̃ = LazyLinearMap(B, (2,), (1,3)) |
192 v = rand(3,2) | 192 v = rand(3,2) |
193 | 193 |
194 @test range_size(B̃) == (4,) | 194 @test range_size(B̃) == (4,) |
195 @test domain_size(B̃) == (3,2) | 195 @test domain_size(B̃) == (3,2) |
196 @test B̃ isa TensorMapping{T,1,2} where T | 196 @test B̃ isa LazyTensor{T,1,2} where T |
197 @test B̃*ones(3,2) ≈ B[1,:,1] + B[2,:,1] + B[3,:,1] + | 197 @test B̃*ones(3,2) ≈ B[1,:,1] + B[2,:,1] + B[3,:,1] + |
198 B[1,:,2] + B[2,:,2] + B[3,:,2] atol=5e-13 | 198 B[1,:,2] + B[2,:,2] + B[3,:,2] atol=5e-13 |
199 @test B̃*v ≈ B[1,:,1]*v[1,1] + B[2,:,1]*v[2,1] + B[3,:,1]*v[3,1] + | 199 @test B̃*v ≈ B[1,:,1]*v[1,1] + B[2,:,1]*v[2,1] + B[3,:,1]*v[3,1] + |
200 B[1,:,2]v[1,2] + B[2,:,2]*v[2,2] + B[3,:,2]*v[3,2] atol=5e-13 | 200 B[1,:,2]v[1,2] + B[2,:,2]*v[2,2] + B[3,:,2]*v[3,2] atol=5e-13 |
201 | 201 |
203 # TODO: | 203 # TODO: |
204 # @inferred (B̃*v)[2] | 204 # @inferred (B̃*v)[2] |
205 end | 205 end |
206 | 206 |
207 | 207 |
208 @testset "IdentityMapping" begin | 208 @testset "IdentityTensor" begin |
209 @test IdentityMapping{Float64}((4,5)) isa IdentityMapping{T,2} where T | 209 @test IdentityTensor{Float64}((4,5)) isa IdentityTensor{T,2} where T |
210 @test IdentityMapping{Float64}((4,5)) isa TensorMapping{T,2,2} where T | 210 @test IdentityTensor{Float64}((4,5)) isa LazyTensor{T,2,2} where T |
211 @test IdentityMapping{Float64}((4,5)) == IdentityMapping{Float64}(4,5) | 211 @test IdentityTensor{Float64}((4,5)) == IdentityTensor{Float64}(4,5) |
212 | 212 |
213 @test IdentityMapping(3,2) isa IdentityMapping{Float64,2} | 213 @test IdentityTensor(3,2) isa IdentityTensor{Float64,2} |
214 | 214 |
215 for sz ∈ [(4,5),(3,),(5,6,4)] | 215 for sz ∈ [(4,5),(3,),(5,6,4)] |
216 I = IdentityMapping{Float64}(sz) | 216 I = IdentityTensor{Float64}(sz) |
217 v = rand(sz...) | 217 v = rand(sz...) |
218 @test I*v == v | 218 @test I*v == v |
219 @test I'*v == v | 219 @test I'*v == v |
220 | 220 |
221 v = rand(ComplexF64,sz...) | 221 v = rand(ComplexF64,sz...) |
224 | 224 |
225 @test range_size(I) == sz | 225 @test range_size(I) == sz |
226 @test domain_size(I) == sz | 226 @test domain_size(I) == sz |
227 end | 227 end |
228 | 228 |
229 I = IdentityMapping{Float64}((4,5)) | 229 I = IdentityTensor{Float64}((4,5)) |
230 v = rand(4,5) | 230 v = rand(4,5) |
231 @inferred (I*v)[3,2] | 231 @inferred (I*v)[3,2] |
232 @inferred (I'*v)[3,2] | 232 @inferred (I'*v)[3,2] |
233 @inferred range_size(I) | 233 @inferred range_size(I) |
234 | 234 |
235 @inferred range_dim(I) | 235 @inferred range_dim(I) |
236 @inferred domain_dim(I) | 236 @inferred domain_dim(I) |
237 | 237 |
238 Ã = rand(4,2) | 238 Ã = rand(4,2) |
239 A = LazyLinearMap(Ã,(1,),(2,)) | 239 A = LazyLinearMap(Ã,(1,),(2,)) |
240 I1 = IdentityMapping{Float64}(2) | 240 I1 = IdentityTensor{Float64}(2) |
241 I2 = IdentityMapping{Float64}(4) | 241 I2 = IdentityTensor{Float64}(4) |
242 @test A∘I1 == A | 242 @test A∘I1 == A |
243 @test I2∘A == A | 243 @test I2∘A == A |
244 @test I1∘I1 == I1 | 244 @test I1∘I1 == I1 |
245 @test_throws SizeMismatch I1∘A | 245 @test_throws SizeMismatch I1∘A |
246 @test_throws SizeMismatch A∘I2 | 246 @test_throws SizeMismatch A∘I2 |
247 @test_throws SizeMismatch I1∘I2 | 247 @test_throws SizeMismatch I1∘I2 |
248 end | 248 end |
249 | 249 |
250 @testset "ScalingTensor" begin | 250 @testset "ScalingTensor" begin |
251 st = ScalingTensor(2.,(3,4)) | 251 st = ScalingTensor(2.,(3,4)) |
252 @test st isa TensorMapping{Float64, 2, 2} | 252 @test st isa LazyTensor{Float64, 2, 2} |
253 @test range_size(st) == (3,4) | 253 @test range_size(st) == (3,4) |
254 @test domain_size(st) == (3,4) | 254 @test domain_size(st) == (3,4) |
255 | 255 |
256 v = rand(3,4) | 256 v = rand(3,4) |
257 @test st*v == 2.0 .* v | 257 @test st*v == 2.0 .* v |
259 | 259 |
260 @inferred (st*v)[2,2] | 260 @inferred (st*v)[2,2] |
261 @inferred (st'*v)[2,2] | 261 @inferred (st'*v)[2,2] |
262 end | 262 end |
263 | 263 |
264 @testset "InflatedTensorMapping" begin | 264 @testset "InflatedLazyTensor" begin |
265 I(sz...) = IdentityMapping(sz...) | 265 I(sz...) = IdentityTensor(sz...) |
266 | 266 |
267 Ã = rand(4,2) | 267 Ã = rand(4,2) |
268 B̃ = rand(4,2,3) | 268 B̃ = rand(4,2,3) |
269 C̃ = rand(4,2,3) | 269 C̃ = rand(4,2,3) |
270 | 270 |
271 A = LazyLinearMap(Ã,(1,),(2,)) | 271 A = LazyLinearMap(Ã,(1,),(2,)) |
272 B = LazyLinearMap(B̃,(1,2),(3,)) | 272 B = LazyLinearMap(B̃,(1,2),(3,)) |
273 C = LazyLinearMap(C̃,(1,),(2,3)) | 273 C = LazyLinearMap(C̃,(1,),(2,3)) |
274 | 274 |
275 @testset "Constructors" begin | 275 @testset "Constructors" begin |
276 @test InflatedTensorMapping(I(3,2), A, I(4)) isa TensorMapping{Float64, 4, 4} | 276 @test InflatedLazyTensor(I(3,2), A, I(4)) isa LazyTensor{Float64, 4, 4} |
277 @test InflatedTensorMapping(I(3,2), B, I(4)) isa TensorMapping{Float64, 5, 4} | 277 @test InflatedLazyTensor(I(3,2), B, I(4)) isa LazyTensor{Float64, 5, 4} |
278 @test InflatedTensorMapping(I(3), C, I(2,3)) isa TensorMapping{Float64, 4, 5} | 278 @test InflatedLazyTensor(I(3), C, I(2,3)) isa LazyTensor{Float64, 4, 5} |
279 @test InflatedTensorMapping(C, I(2,3)) isa TensorMapping{Float64, 3, 4} | 279 @test InflatedLazyTensor(C, I(2,3)) isa LazyTensor{Float64, 3, 4} |
280 @test InflatedTensorMapping(I(3), C) isa TensorMapping{Float64, 2, 3} | 280 @test InflatedLazyTensor(I(3), C) isa LazyTensor{Float64, 2, 3} |
281 @test InflatedTensorMapping(I(3), I(2,3)) isa TensorMapping{Float64, 3, 3} | 281 @test InflatedLazyTensor(I(3), I(2,3)) isa LazyTensor{Float64, 3, 3} |
282 end | 282 end |
283 | 283 |
284 @testset "Range and domain size" begin | 284 @testset "Range and domain size" begin |
285 @test range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) | 285 @test range_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,4,4) |
286 @test domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) | 286 @test domain_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,2,4) |
287 | 287 |
288 @test range_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,4,2,4) | 288 @test range_size(InflatedLazyTensor(I(3,2), B, I(4))) == (3,2,4,2,4) |
289 @test domain_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,3,4) | 289 @test domain_size(InflatedLazyTensor(I(3,2), B, I(4))) == (3,2,3,4) |
290 | 290 |
291 @test range_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,4,2,3) | 291 @test range_size(InflatedLazyTensor(I(3), C, I(2,3))) == (3,4,2,3) |
292 @test domain_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,2,3,2,3) | 292 @test domain_size(InflatedLazyTensor(I(3), C, I(2,3))) == (3,2,3,2,3) |
293 | 293 |
294 @inferred range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) | 294 @inferred range_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,4,4) |
295 @inferred domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) | 295 @inferred domain_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,2,4) |
296 end | 296 end |
297 | 297 |
298 @testset "Application" begin | 298 @testset "Application" begin |
299 # Testing regular application and transposed application with inflation "before", "after" and "before and after". | 299 # Testing regular application and transposed application with inflation "before", "after" and "before and after". |
300 # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input. | 300 # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input. |
301 tests = [ | 301 tests = [ |
302 ( | 302 ( |
303 InflatedTensorMapping(I(3,2), A, I(4)), | 303 InflatedLazyTensor(I(3,2), A, I(4)), |
304 (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply | 304 (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply |
305 (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose | 305 (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose |
306 ), | 306 ), |
307 ( | 307 ( |
308 InflatedTensorMapping(I(3,2), B, I(4)), | 308 InflatedLazyTensor(I(3,2), B, I(4)), |
309 (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]), | 309 (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]), |
310 (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]), | 310 (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]), |
311 ), | 311 ), |
312 ( | 312 ( |
313 InflatedTensorMapping(I(3,2), C, I(4)), | 313 InflatedLazyTensor(I(3,2), C, I(4)), |
314 (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]), | 314 (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]), |
315 (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]), | 315 (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]), |
316 ), | 316 ), |
317 ( | 317 ( |
318 InflatedTensorMapping(I(3,2), A), | 318 InflatedLazyTensor(I(3,2), A), |
319 (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]), | 319 (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]), |
320 (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]), | 320 (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]), |
321 ), | 321 ), |
322 ( | 322 ( |
323 InflatedTensorMapping(I(3,2), B), | 323 InflatedLazyTensor(I(3,2), B), |
324 (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]), | 324 (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]), |
325 (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]), | 325 (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]), |
326 ), | 326 ), |
327 ( | 327 ( |
328 InflatedTensorMapping(I(3,2), C), | 328 InflatedLazyTensor(I(3,2), C), |
329 (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]), | 329 (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]), |
330 (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]), | 330 (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]), |
331 ), | 331 ), |
332 ( | 332 ( |
333 InflatedTensorMapping(A,I(4)), | 333 InflatedLazyTensor(A,I(4)), |
334 (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]), | 334 (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]), |
335 (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]), | 335 (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]), |
336 ), | 336 ), |
337 ( | 337 ( |
338 InflatedTensorMapping(B,I(4)), | 338 InflatedLazyTensor(B,I(4)), |
339 (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]), | 339 (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]), |
340 (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]), | 340 (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]), |
341 ), | 341 ), |
342 ( | 342 ( |
343 InflatedTensorMapping(C,I(4)), | 343 InflatedLazyTensor(C,I(4)), |
344 (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]), | 344 (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]), |
345 (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]), | 345 (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]), |
346 ), | 346 ), |
347 ] | 347 ] |
348 | 348 |
363 @test tm'*v ≈ true_value rtol=1e-14 | 363 @test tm'*v ≈ true_value rtol=1e-14 |
364 end | 364 end |
365 end | 365 end |
366 | 366 |
367 @testset "application to other type" begin | 367 @testset "application to other type" begin |
368 tm = InflatedTensorMapping(I(3,2), A, I(4)) | 368 tm = InflatedLazyTensor(I(3,2), A, I(4)) |
369 | 369 |
370 v = rand(ComplexF64, domain_size(tm)...) | 370 v = rand(ComplexF64, domain_size(tm)...) |
371 @test (tm*v)[1,2,3,1] isa ComplexF64 | 371 @test (tm*v)[1,2,3,1] isa ComplexF64 |
372 | 372 |
373 v = rand(ComplexF64, domain_size(tm')...) | 373 v = rand(ComplexF64, domain_size(tm')...) |
374 @test (tm'*v)[1,2,2,1] isa ComplexF64 | 374 @test (tm'*v)[1,2,2,1] isa ComplexF64 |
375 end | 375 end |
376 | 376 |
377 @testset "Inference of application" begin | 377 @testset "Inference of application" begin |
378 tm = InflatedTensorMapping(I(2,3),ScalingTensor(2.0, (3,2)),I(3,4)) | 378 tm = InflatedLazyTensor(I(2,3),ScalingTensor(2.0, (3,2)),I(3,4)) |
379 v = rand(domain_size(tm)...) | 379 v = rand(domain_size(tm)...) |
380 | 380 |
381 @inferred apply(tm,v,1,2,3,2,2,4) | 381 @inferred apply(tm,v,1,2,3,2,2,4) |
382 @inferred (tm*v)[1,2,3,2,2,4] | 382 @inferred (tm*v)[1,2,3,2,2,4] |
383 end | 383 end |
384 end | 384 end |
385 | 385 |
386 @testset "InflatedTensorMapping of InflatedTensorMapping" begin | 386 @testset "InflatedLazyTensor of InflatedLazyTensor" begin |
387 A = ScalingTensor(2.0,(2,3)) | 387 A = ScalingTensor(2.0,(2,3)) |
388 itm = InflatedTensorMapping(I(3,2), A, I(4)) | 388 itm = InflatedLazyTensor(I(3,2), A, I(4)) |
389 @test InflatedTensorMapping(I(4), itm, I(2)) == InflatedTensorMapping(I(4,3,2), A, I(4,2)) | 389 @test InflatedLazyTensor(I(4), itm, I(2)) == InflatedLazyTensor(I(4,3,2), A, I(4,2)) |
390 @test InflatedTensorMapping(itm, I(2)) == InflatedTensorMapping(I(3,2), A, I(4,2)) | 390 @test InflatedLazyTensor(itm, I(2)) == InflatedLazyTensor(I(3,2), A, I(4,2)) |
391 @test InflatedTensorMapping(I(4), itm) == InflatedTensorMapping(I(4,3,2), A, I(4)) | 391 @test InflatedLazyTensor(I(4), itm) == InflatedLazyTensor(I(4,3,2), A, I(4)) |
392 | 392 |
393 @test InflatedTensorMapping(I(2), I(2), I(2)) isa InflatedTensorMapping # The constructor should always return its type. | 393 @test InflatedLazyTensor(I(2), I(2), I(2)) isa InflatedLazyTensor # The constructor should always return its type. |
394 end | 394 end |
395 end | 395 end |
396 | 396 |
397 @testset "split_index" begin | 397 @testset "split_index" begin |
398 @test LazyTensors.split_index(Val(2),Val(1),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,5,6),(3,4)) | 398 @test LazyTensors.split_index(Val(2),Val(1),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,5,6),(3,4)) |
460 A = ScalingTensor(2.0, (5,)) | 460 A = ScalingTensor(2.0, (5,)) |
461 B = ScalingTensor(3.0, (3,)) | 461 B = ScalingTensor(3.0, (3,)) |
462 C = ScalingTensor(5.0, (3,2)) | 462 C = ScalingTensor(5.0, (3,2)) |
463 | 463 |
464 AB = LazyOuterProduct(A,B) | 464 AB = LazyOuterProduct(A,B) |
465 @test AB isa TensorMapping{T,2,2} where T | 465 @test AB isa LazyTensor{T,2,2} where T |
466 @test range_size(AB) == (5,3) | 466 @test range_size(AB) == (5,3) |
467 @test domain_size(AB) == (5,3) | 467 @test domain_size(AB) == (5,3) |
468 | 468 |
469 v = rand(range_size(AB)...) | 469 v = rand(range_size(AB)...) |
470 @test AB*v == 6*v | 470 @test AB*v == 6*v |
471 | 471 |
472 ABC = LazyOuterProduct(A,B,C) | 472 ABC = LazyOuterProduct(A,B,C) |
473 | 473 |
474 @test ABC isa TensorMapping{T,4,4} where T | 474 @test ABC isa LazyTensor{T,4,4} where T |
475 @test range_size(ABC) == (5,3,3,2) | 475 @test range_size(ABC) == (5,3,3,2) |
476 @test domain_size(ABC) == (5,3,3,2) | 476 @test domain_size(ABC) == (5,3,3,2) |
477 | 477 |
478 @test A⊗B == AB | 478 @test A⊗B == AB |
479 @test A⊗B⊗C == ABC | 479 @test A⊗B⊗C == ABC |
494 B̃Ã = LazyOuterProduct(B̃,Ã) | 494 B̃Ã = LazyOuterProduct(B̃,Ã) |
495 @tullio BAv[k,i] := A[i,j]*B[k,l,m]*v₂[l,m,j] | 495 @tullio BAv[k,i] := A[i,j]*B[k,l,m]*v₂[l,m,j] |
496 @test B̃Ã*v₂ ≈ BAv | 496 @test B̃Ã*v₂ ≈ BAv |
497 | 497 |
498 @testset "Indentity mapping arguments" begin | 498 @testset "Indentity mapping arguments" begin |
499 @test LazyOuterProduct(IdentityMapping(3,2), IdentityMapping(1,2)) == IdentityMapping(3,2,1,2) | 499 @test LazyOuterProduct(IdentityTensor(3,2), IdentityTensor(1,2)) == IdentityTensor(3,2,1,2) |
500 | 500 |
501 Ã = LazyLinearMap(A,(1,),(2,)) | 501 Ã = LazyLinearMap(A,(1,),(2,)) |
502 @test LazyOuterProduct(IdentityMapping(3,2), Ã) == InflatedTensorMapping(IdentityMapping(3,2),Ã) | 502 @test LazyOuterProduct(IdentityTensor(3,2), Ã) == InflatedLazyTensor(IdentityTensor(3,2),Ã) |
503 @test LazyOuterProduct(Ã, IdentityMapping(3,2)) == InflatedTensorMapping(Ã,IdentityMapping(3,2)) | 503 @test LazyOuterProduct(Ã, IdentityTensor(3,2)) == InflatedLazyTensor(Ã,IdentityTensor(3,2)) |
504 | 504 |
505 I1 = IdentityMapping(3,2) | 505 I1 = IdentityTensor(3,2) |
506 I2 = IdentityMapping(4) | 506 I2 = IdentityTensor(4) |
507 @test I1⊗Ã⊗I2 == InflatedTensorMapping(I1, Ã, I2) | 507 @test I1⊗Ã⊗I2 == InflatedLazyTensor(I1, Ã, I2) |
508 end | 508 end |
509 | 509 |
510 end | 510 end |