comparison test/SbpOperators/volumeops/laplace/laplace_test.jl @ 1613:15488c889a50 feature/boundary_conditions

Fix variable name
author Vidar Stiernström <vidar.stiernstrom@gmail.com>
date Sun, 09 Jun 2024 16:51:56 -0700
parents fca4a01d60c9
children b74e1a21265f
comparison
equal deleted inserted replaced
1612:3887f41e1942 1613:15488c889a50
127 stencil_set = read_stencil_set(operator_path; order=o) 127 stencil_set = read_stencil_set(operator_path; order=o)
128 Δ = Laplace(g, stencil_set) 128 Δ = Laplace(g, stencil_set)
129 H = inner_product(g, stencil_set) 129 H = inner_product(g, stencil_set)
130 u = collect(eval_on(g, (x,y) -> cos(π*x)cos(2*π*y))) 130 u = collect(eval_on(g, (x,y) -> cos(π*x)cos(2*π*y)))
131 Δu = collect(eval_on(g, (x,y) -> -5*π^2*cos(π*x)cos(2*π*y))) 131 Δu = collect(eval_on(g, (x,y) -> -5*π^2*cos(π*x)cos(2*π*y)))
132 op = Δ 132 D = Δ
133 for id ∈ boundary_identifiers(g) 133 for id ∈ boundary_identifiers(g)
134 op = op + foldl(∘, sat_tensors(Δ, g, NeumannCondition(0., id))) 134 D = D + foldl(∘, sat_tensors(Δ, g, NeumannCondition(0., id)))
135 end 135 end
136 e = op*u .- Δu 136 e = D*u .- Δu
137 # Accuracy 137 # Accuracy
138 @test sqrt(sum(H*e.^2)) ≈ 0 atol = tol 138 @test sqrt(sum(H*e.^2)) ≈ 0 atol = tol
139 # Symmetry 139 # Symmetry
140 # TODO: # Consider generating the matrices to H and D and test D'H == H'D 140 # TODO: # Consider generating the matrices to H and D and test D'H == H'D
141 r = randn(size(u)) 141 r = randn(size(u))