Mercurial > repos > public > sbplib_julia
comparison LazyTensors/test/runtests.jl @ 291:0f94dc29c4bf
Merge in branch boundary_conditions
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 22 Jun 2020 21:43:05 +0200 |
parents | d6edd37551ea |
children | 277dff5b071a |
comparison
equal
deleted
inserted
replaced
231:fbabfd4e8f20 | 291:0f94dc29c4bf |
---|---|
1 using Test | 1 using Test |
2 using LazyTensors | 2 using LazyTensors |
3 using RegionIndices | |
3 | 4 |
4 @testset "Generic Mapping methods" begin | 5 @testset "Generic Mapping methods" begin |
5 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | 6 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end |
6 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply | 7 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Index{<:Region}}) where {T,R,D} = :apply |
7 @test range_dim(DummyMapping{Int,2,3}()) == 2 | 8 @test range_dim(DummyMapping{Int,2,3}()) == 2 |
8 @test domain_dim(DummyMapping{Int,2,3}()) == 3 | 9 @test domain_dim(DummyMapping{Int,2,3}()) == 3 |
9 @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),0) == :apply | 10 @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),(Index{Unknown}(0),Index{Unknown}(0))) == :apply |
10 end | 11 end |
11 | 12 |
12 @testset "Generic Operator methods" begin | 13 @testset "Generic Operator methods" begin |
13 struct DummyOperator{T,D} <: TensorOperator{T,D} end | 14 struct DummyOperator{T,D} <: TensorOperator{T,D} end |
14 @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5) | 15 @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5) |
16 end | 17 end |
17 | 18 |
18 @testset "Mapping transpose" begin | 19 @testset "Mapping transpose" begin |
19 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | 20 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end |
20 | 21 |
21 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply | 22 LazyTensors.apply(m::DummyMapping{T,R,D}, v, I::NTuple{R,Index{<:Region}}) where {T,R,D} = :apply |
22 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply_transpose | 23 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::NTuple{D,Index{<:Region}}) where {T,R,D} = :apply_transpose |
23 | 24 |
24 LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size) where {T,R,D} = :range_size | 25 LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = :range_size |
25 LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size) where {T,R,D} = :domain_size | 26 LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = :domain_size |
26 | 27 |
27 m = DummyMapping{Float64,2,3}() | 28 m = DummyMapping{Float64,2,3}() |
29 I = Index{Unknown}(0) | |
30 @test m' isa TensorMapping{Float64, 3,2} | |
28 @test m'' == m | 31 @test m'' == m |
29 @test apply(m',zeros(Float64,(0,0)),0) == :apply_transpose | 32 @test apply(m',zeros(Float64,(0,0)), (I,I,I)) == :apply_transpose |
30 @test apply(m'',zeros(Float64,(0,0,0)),0) == :apply | 33 @test apply(m'',zeros(Float64,(0,0,0)),(I,I)) == :apply |
31 @test apply_transpose(m', zeros(Float64,(0,0,0)),0) == :apply | 34 @test apply_transpose(m', zeros(Float64,(0,0,0)),(I,I)) == :apply |
32 | 35 |
33 @test range_size(m', (0,0)) == :domain_size | 36 @test range_size(m', (0,0)) == :domain_size |
34 @test domain_size(m', (0,0,0)) == :range_size | 37 @test domain_size(m', (0,0,0)) == :range_size |
35 end | 38 end |
36 | 39 |
37 @testset "TensorApplication" begin | 40 @testset "TensorApplication" begin |
38 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | 41 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end |
39 | 42 |
40 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = (:apply,v,i) | 43 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Index{<:Region}}) where {T,R,D} = (:apply,v,i) |
41 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply_transpose | 44 LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = 2 .* domain_size |
42 | 45 LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = range_size.÷2 |
43 LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size) where {T,R,D} = 2 .* domain_size | |
44 LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size) where {T,R,D} = range_size.÷2 | |
45 | 46 |
46 | 47 |
47 m = DummyMapping{Int, 1, 1}() | 48 m = DummyMapping{Int, 1, 1}() |
48 v = [0,1,2] | 49 v = [0,1,2] |
49 @test m*v isa AbstractVector{Int} | 50 @test m*v isa AbstractVector{Int} |
50 @test size(m*v) == 2 .*size(v) | 51 @test size(m*v) == 2 .*size(v) |
51 @test (m*v)[0] == (:apply,v,0) | 52 @test (m*v)[Index{Upper}(0)] == (:apply,v,(Index{Upper}(0),)) |
53 @test (m*v)[0] == (:apply,v,(Index{Unknown}(0),)) | |
52 @test m*m*v isa AbstractVector{Int} | 54 @test m*m*v isa AbstractVector{Int} |
53 @test (m*m*v)[1] == (:apply,m*v,1) | 55 @test (m*m*v)[Index{Upper}(1)] == (:apply,m*v,(Index{Upper}(1),)) |
54 @test (m*m*v)[3] == (:apply,m*v,3) | 56 @test (m*m*v)[1] == (:apply,m*v,(Index{Unknown}(1),)) |
55 @test (m*m*v)[6] == (:apply,m*v,6) | 57 @test (m*m*v)[Index{Interior}(3)] == (:apply,m*v,(Index{Interior}(3),)) |
58 @test (m*m*v)[3] == (:apply,m*v,(Index{Unknown}(3),)) | |
59 @test (m*m*v)[Index{Lower}(6)] == (:apply,m*v,(Index{Lower}(6),)) | |
60 @test (m*m*v)[6] == (:apply,m*v,(Index{Unknown}(6),)) | |
56 @test_broken BoundsError == (m*m*v)[0] | 61 @test_broken BoundsError == (m*m*v)[0] |
57 @test_broken BoundsError == (m*m*v)[7] | 62 @test_broken BoundsError == (m*m*v)[7] |
63 | |
64 m = DummyMapping{Int, 2, 1}() | |
65 @test_throws MethodError m*ones(Int,2,2) | |
66 @test_throws MethodError m*m*v | |
67 | |
68 m = DummyMapping{Float64, 2, 2}() | |
69 v = ones(3,3) | |
70 I = (Index{Lower}(1),Index{Interior}(2)); | |
71 @test size(m*v) == 2 .*size(v) | |
72 @test (m*v)[I] == (:apply,v,I) | |
73 | |
74 struct ScalingOperator{T,D} <: TensorOperator{T,D} | |
75 λ::T | |
76 end | |
77 | |
78 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::NTuple{D, Index}) where {T,D} = m.λ*v[I] | |
79 | |
80 m = ScalingOperator{Int,1}(2) | |
81 v = [1,2,3] | |
82 @test m*v isa AbstractVector | |
83 @test m*v == [2,4,6] | |
84 | |
85 m = ScalingOperator{Int,2}(2) | |
86 v = [[1 2];[3 4]] | |
87 @test m*v == [[2 4];[6 8]] | |
88 I = (Index{Upper}(2),Index{Lower}(1)) | |
89 @test (m*v)[I] == 6 | |
58 end | 90 end |
59 | 91 |
60 @testset "TensorMapping binary operations" begin | 92 @testset "TensorMapping binary operations" begin |
61 struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D} | 93 struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D} |
62 λ::T | 94 λ::T |
63 end | 95 end |
64 | 96 |
65 LazyTensors.apply(m::ScalarMapping{T,R,D}, v, i) where {T,R,D} = m.λ*v[i] | 97 LazyTensors.apply(m::ScalarMapping{T,R,D}, v, I::Tuple{Index{<:Region}}) where {T,R,D} = m.λ*v[I...] |
66 LazyTensors.range_size(m::ScalarMapping, domain_size) = domain_size | 98 LazyTensors.range_size(m::ScalarMapping, domain_size) = domain_size |
67 LazyTensors.domain_size(m::ScalarMapping, range_sizes) = range_sizes | 99 LazyTensors.domain_size(m::ScalarMapping, range_sizes) = range_sizes |
68 | 100 |
69 A = ScalarMapping{Float64,1,1}(2.0) | 101 A = ScalarMapping{Float64,1,1}(2.0) |
70 B = ScalarMapping{Float64,1,1}(3.0) | 102 B = ScalarMapping{Float64,1,1}(3.0) |
71 | 103 |
72 v = [1.1,1.2,1.3] | 104 v = [1.1,1.2,1.3] |
73 | |
74 for i ∈ eachindex(v) | 105 for i ∈ eachindex(v) |
75 @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] | 106 @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] |
76 end | 107 end |
77 | 108 |
78 for i ∈ eachindex(v) | 109 for i ∈ eachindex(v) |
86 @testset "LazyArray" begin | 117 @testset "LazyArray" begin |
87 struct DummyArray{T,D, T1<:AbstractArray{T,D}} <: LazyArray{T,D} | 118 struct DummyArray{T,D, T1<:AbstractArray{T,D}} <: LazyArray{T,D} |
88 data::T1 | 119 data::T1 |
89 end | 120 end |
90 Base.size(v::DummyArray) = size(v.data) | 121 Base.size(v::DummyArray) = size(v.data) |
91 Base.getindex(v::DummyArray, I...) = v.data[I...] | 122 Base.getindex(v::DummyArray{T,D}, I::Vararg{Int,D}) where {T,D} = v.data[I...] |
92 | 123 |
93 # Test lazy operations | 124 # Test lazy operations |
94 v1 = [1, 2.3, 4] | 125 v1 = [1, 2.3, 4] |
95 v2 = [1., 2, 3] | 126 v2 = [1., 2, 3] |
96 r_add = v1 .+ v2 | 127 s = 3.4 |
97 r_sub = v1 .- v2 | 128 r_add_v = v1 .+ v2 |
98 r_times = v1 .* v2 | 129 r_sub_v = v1 .- v2 |
99 r_div = v1 ./ v2 | 130 r_times_v = v1 .* v2 |
131 r_div_v = v1 ./ v2 | |
132 r_add_s = v1 .+ s | |
133 r_sub_s = v1 .- s | |
134 r_times_s = v1 .* s | |
135 r_div_s = v1 ./ s | |
100 @test isa(v1 +̃ v2, LazyArray) | 136 @test isa(v1 +̃ v2, LazyArray) |
101 @test isa(v1 -̃ v2, LazyArray) | 137 @test isa(v1 -̃ v2, LazyArray) |
102 @test isa(v1 *̃ v2, LazyArray) | 138 @test isa(v1 *̃ v2, LazyArray) |
103 @test isa(v1 /̃ v2, LazyArray) | 139 @test isa(v1 /̃ v2, LazyArray) |
140 @test isa(v1 +̃ s, LazyArray) | |
141 @test isa(v1 -̃ s, LazyArray) | |
142 @test isa(v1 *̃ s, LazyArray) | |
143 @test isa(v1 /̃ s, LazyArray) | |
144 @test isa(s +̃ v1, LazyArray) | |
145 @test isa(s -̃ v1, LazyArray) | |
146 @test isa(s *̃ v1, LazyArray) | |
147 @test isa(s /̃ v1, LazyArray) | |
104 for i ∈ eachindex(v1) | 148 for i ∈ eachindex(v1) |
105 @test (v1 +̃ v2)[i] == r_add[i] | 149 @test (v1 +̃ v2)[i] == r_add_v[i] |
106 @test (v1 -̃ v2)[i] == r_sub[i] | 150 @test (v1 -̃ v2)[i] == r_sub_v[i] |
107 @test (v1 *̃ v2)[i] == r_times[i] | 151 @test (v1 *̃ v2)[i] == r_times_v[i] |
108 @test (v1 /̃ v2)[i] == r_div[i] | 152 @test (v1 /̃ v2)[i] == r_div_v[i] |
153 @test (v1 +̃ s)[i] == r_add_s[i] | |
154 @test (v1 -̃ s)[i] == r_sub_s[i] | |
155 @test (v1 *̃ s)[i] == r_times_s[i] | |
156 @test (v1 /̃ s)[i] == r_div_s[i] | |
157 @test (s +̃ v1)[i] == r_add_s[i] | |
158 @test (s -̃ v1)[i] == -r_sub_s[i] | |
159 @test (s *̃ v1)[i] == r_times_s[i] | |
160 @test (s /̃ v1)[i] == 1/r_div_s[i] | |
109 end | 161 end |
110 @test_throws BoundsError (v1 +̃ v2)[4] | 162 @test_throws BoundsError (v1 +̃ v2)[4] |
111 v2 = [1., 2, 3, 4] | 163 v2 = [1., 2, 3, 4] |
112 # Test that size of arrays is asserted when not specified inbounds | 164 # Test that size of arrays is asserted when not specified inbounds |
113 @test_throws DimensionMismatch v1 +̃ v2 | 165 @test_throws DimensionMismatch v1 +̃ v2 |
118 @test isa(v1 + v2, LazyArray) | 170 @test isa(v1 + v2, LazyArray) |
119 @test isa(v2 + v1, LazyArray) | 171 @test isa(v2 + v1, LazyArray) |
120 @test isa(v1 - v2, LazyArray) | 172 @test isa(v1 - v2, LazyArray) |
121 @test isa(v2 - v1, LazyArray) | 173 @test isa(v2 - v1, LazyArray) |
122 for i ∈ eachindex(v2) | 174 for i ∈ eachindex(v2) |
123 @test (v1 + v2)[i] == (v2 + v1)[i] == r_add[i] | 175 @test (v1 + v2)[i] == (v2 + v1)[i] == r_add_v[i] |
124 @test (v1 - v2)[i] == -(v2 - v1)[i] == r_sub[i] | 176 @test (v1 - v2)[i] == -(v2 - v1)[i] == r_sub_v[i] |
125 end | 177 end |
126 @test_throws BoundsError (v1 + v2)[4] | 178 @test_throws BoundsError (v1 + v2)[4] |
127 v2 = [1., 2, 3, 4] | 179 v2 = [1., 2, 3, 4] |
128 # Test that size of arrays is asserted when not specified inbounds | 180 # Test that size of arrays is asserted when not specified inbounds |
129 @test_throws DimensionMismatch v1 + v2 | 181 @test_throws DimensionMismatch v1 + v2 |