Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/derivatives/second_derivative_test.jl @ 875:067a322e4f73 laplace_benchmarks
Merge with feature/laplace_opset
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 27 Jan 2022 10:55:08 +0100 |
parents | d2f4ac2be47f |
children | 2ae62dbaf839 |
comparison
equal
deleted
inserted
replaced
874:7e9ebd572deb | 875:067a322e4f73 |
---|---|
1 using Test | |
2 | |
3 using Sbplib.SbpOperators | |
4 using Sbplib.Grids | |
5 using Sbplib.LazyTensors | |
6 | |
7 import Sbplib.SbpOperators.VolumeOperator | |
8 | |
9 @testset "SecondDerivative" begin | |
10 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
11 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | |
12 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
13 Lx = 3.5 | |
14 Ly = 3. | |
15 g_1D = EquidistantGrid(121, 0.0, Lx) | |
16 g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) | |
17 | |
18 @testset "Constructors" begin | |
19 @testset "1D" begin | |
20 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | |
21 @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils,1) | |
22 @test Dₓₓ isa VolumeOperator | |
23 end | |
24 @testset "2D" begin | |
25 Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1) | |
26 D2 = second_derivative(g_1D,inner_stencil,closure_stencils) | |
27 I = IdentityMapping{Float64}(size(g_2D)[2]) | |
28 @test Dₓₓ == D2⊗I | |
29 @test Dₓₓ isa TensorMapping{T,2,2} where T | |
30 end | |
31 end | |
32 | |
33 # Exact differentiation is measured point-wise. In other cases | |
34 # the error is measured in the l2-norm. | |
35 @testset "Accuracy" begin | |
36 @testset "1D" begin | |
37 l2(v) = sqrt(spacing(g_1D)[1]*sum(v.^2)); | |
38 monomials = () | |
39 maxOrder = 4; | |
40 for i = 0:maxOrder-1 | |
41 f_i(x) = 1/factorial(i)*x^i | |
42 monomials = (monomials...,evalOn(g_1D,f_i)) | |
43 end | |
44 v = evalOn(g_1D,x -> sin(x)) | |
45 vₓₓ = evalOn(g_1D,x -> -sin(x)) | |
46 | |
47 # 2nd order interior stencil, 1nd order boundary stencil, | |
48 # implies that L*v should be exact for monomials up to order 2. | |
49 @testset "2nd order" begin | |
50 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
51 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | |
52 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
53 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | |
54 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
55 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
56 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | |
57 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 | |
58 end | |
59 | |
60 # 4th order interior stencil, 2nd order boundary stencil, | |
61 # implies that L*v should be exact for monomials up to order 3. | |
62 @testset "4th order" begin | |
63 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
64 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | |
65 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
66 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | |
67 # NOTE: high tolerances for checking the "exact" differentiation | |
68 # due to accumulation of round-off errors/cancellation errors? | |
69 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
70 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
71 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | |
72 @test Dₓₓ*monomials[4] ≈ monomials[2] atol = 5e-10 | |
73 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-4 norm = l2 | |
74 end | |
75 end | |
76 | |
77 @testset "2D" begin | |
78 l2(v) = sqrt(prod(spacing(g_2D))*sum(v.^2)); | |
79 binomials = () | |
80 maxOrder = 4; | |
81 for i = 0:maxOrder-1 | |
82 f_i(x,y) = 1/factorial(i)*y^i + x^i | |
83 binomials = (binomials...,evalOn(g_2D,f_i)) | |
84 end | |
85 v = evalOn(g_2D, (x,y) -> sin(x)+cos(y)) | |
86 v_yy = evalOn(g_2D,(x,y) -> -cos(y)) | |
87 | |
88 # 2nd order interior stencil, 1st order boundary stencil, | |
89 # implies that L*v should be exact for binomials up to order 2. | |
90 @testset "2nd order" begin | |
91 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
92 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | |
93 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
94 Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) | |
95 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
96 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
97 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | |
98 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 | |
99 end | |
100 | |
101 # 4th order interior stencil, 2nd order boundary stencil, | |
102 # implies that L*v should be exact for binomials up to order 3. | |
103 @testset "4th order" begin | |
104 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
105 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | |
106 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
107 Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) | |
108 # NOTE: high tolerances for checking the "exact" differentiation | |
109 # due to accumulation of round-off errors/cancellation errors? | |
110 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
111 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
112 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | |
113 @test Dyy*binomials[4] ≈ evalOn(g_2D,(x,y)->y) atol = 5e-9 | |
114 @test Dyy*v ≈ v_yy rtol = 5e-4 norm = l2 | |
115 end | |
116 end | |
117 end | |
118 end |