Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/operators/standard_diagonal.toml @ 875:067a322e4f73 laplace_benchmarks
Merge with feature/laplace_opset
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 27 Jan 2022 10:55:08 +0100 |
parents | fe8fe3f01162 |
children | 61f5850ca456 35be8253de89 |
comparison
equal
deleted
inserted
replaced
874:7e9ebd572deb | 875:067a322e4f73 |
---|---|
1 [meta] | 1 [meta] |
2 authors = "Ken Mattson" | 2 authors = "Ken Mattson" |
3 descripion = "Standard operators for equidistant grids" | 3 description = "Standard operators for equidistant grids" |
4 type = "equidistant" | 4 type = "equidistant" |
5 cite = """ | |
6 Ken Mattsson, Jan Nordström, | |
7 Summation by parts operators for finite difference approximations of second derivatives, | |
8 Journal of Computational Physics, | |
9 Volume 199, Issue 2, | |
10 2004, | |
11 Pages 503-540, | |
12 ISSN 0021-9991, | |
13 https://doi.org/10.1016/j.jcp.2004.03.001. | |
14 """ | |
5 | 15 |
6 [order2] | 16 [[stencil_set]] |
7 H.inner = ["1"] | 17 |
18 order = 2 | |
19 | |
20 H.inner = "1" | |
8 H.closure = ["1/2"] | 21 H.closure = ["1/2"] |
9 | 22 |
10 D1.inner_stencil = ["-1/2", "0", "1/2"] | 23 D1.inner_stencil = ["-1/2", "0", "1/2"] |
11 D1.closure_stencils = [ | 24 D1.closure_stencils = [ |
12 ["-1", "1"], | 25 {s = ["-1", "1"], c = 1}, |
13 ] | 26 ] |
14 | 27 |
15 D2.inner_stencil = ["1", "-2", "1"] | 28 D2.inner_stencil = ["1", "-2", "1"] |
16 D2.closure_stencils = [ | 29 D2.closure_stencils = [ |
17 ["1", "-2", "1"], | 30 {s = ["1", "-2", "1"], c = 1}, |
18 ] | 31 ] |
19 | 32 |
20 e.closure = ["1"] | 33 e.closure = ["1"] |
21 d1.closure = ["-3/2", "2", "-1/2"] | 34 d1.closure = {s = ["-3/2", "2", "-1/2"], c = 1} |
22 | 35 |
23 [order4] | 36 [[stencil_set]] |
24 H.inner = ["1"] | 37 |
38 order = 4 | |
39 | |
40 H.inner = "1" | |
25 H.closure = ["17/48", "59/48", "43/48", "49/48"] | 41 H.closure = ["17/48", "59/48", "43/48", "49/48"] |
42 | |
43 D1.inner_stencil = ["1/12","-2/3","0","2/3","-1/12"] | |
44 D1.closure_stencils = [ | |
45 {s = [ "-24/17", "59/34", "-4/17", "-3/34", "0", "0"], c = 1}, | |
46 {s = [ "-1/2", "0", "1/2", "0", "0", "0"], c = 2}, | |
47 {s = [ "4/43", "-59/86", "0", "59/86", "-4/43", "0"], c = 3}, | |
48 {s = [ "3/98", "0", "-59/98", "0", "32/49", "-4/49"], c = 4}, | |
49 ] | |
26 | 50 |
27 D2.inner_stencil = ["-1/12","4/3","-5/2","4/3","-1/12"] | 51 D2.inner_stencil = ["-1/12","4/3","-5/2","4/3","-1/12"] |
28 D2.closure_stencils = [ | 52 D2.closure_stencils = [ |
29 [ "2", "-5", "4", "-1", "0", "0"], | 53 {s = [ "2", "-5", "4", "-1", "0", "0"], c = 1}, |
30 [ "1", "-2", "1", "0", "0", "0"], | 54 {s = [ "1", "-2", "1", "0", "0", "0"], c = 2}, |
31 [ "-4/43", "59/43", "-110/43", "59/43", "-4/43", "0"], | 55 {s = [ "-4/43", "59/43", "-110/43", "59/43", "-4/43", "0"], c = 3}, |
32 [ "-1/49", "0", "59/49", "-118/49", "64/49", "-4/49"], | 56 {s = [ "-1/49", "0", "59/49", "-118/49", "64/49", "-4/49"], c = 4}, |
33 ] | 57 ] |
34 | 58 |
35 e.closure = ["1"] | 59 e.closure = ["1"] |
36 d1.closure = ["-11/6", "3", "-3/2", "1/3"] | 60 d1.closure = {s = ["-11/6", "3", "-3/2", "1/3"], c = 1} |