comparison src/LazyTensors/lazy_tensor_operations.jl @ 333:01b851161018 refactor/combine_to_one_package

Start converting to one package by moving all the files to their correct location
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 25 Sep 2020 13:06:02 +0200
parents LazyTensors/src/lazy_tensor_operations.jl@ece3f6f8a1d4
children 7fe43d902a27
comparison
equal deleted inserted replaced
332:535f1bff4bcc 333:01b851161018
1 """
2 LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R}
3
4 Struct for lazy application of a TensorMapping. Created using `*`.
5
6 Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`.
7 With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`.
8 The actual result will be calcualted when indexing into `m*v`.
9 """
10 struct LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R}
11 t::TensorMapping{T,R,D}
12 o::AbstractArray{T,D}
13 end
14 export LazyTensorMappingApplication
15
16 Base.:*(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o)
17 Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg{Index,R}) where {T,R,D} = apply(ta.t, ta.o, I...)
18 Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg{Int,R}) where {T,R,D} = apply(ta.t, ta.o, Index{Unknown}.(I)...)
19 Base.size(ta::LazyTensorMappingApplication{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o))
20 # TODO: What else is needed to implement the AbstractArray interface?
21
22 # # We need the associativity to be a→b→c = a→(b→c), which is the case for '→'
23 Base.:*(a::TensorMapping{T,R,D}, b::TensorMapping{T,D,K}, args::Union{TensorMapping{T}, AbstractArray{T}}...) where {T,R,D,K} = foldr(*,(a,b,args...))
24 # # Should we overload some other infix binary opesrator?
25 # →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o)
26 # TODO: We need to be really careful about good error messages.
27 # For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)?
28
29 """
30 LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R}
31
32 Struct for lazy transpose of a TensorMapping.
33
34 If a mapping implements the the `apply_transpose` method this allows working with
35 the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling
36 the appropriate methods of `m`.
37 """
38 struct LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R}
39 tm::TensorMapping{T,R,D}
40 end
41 export LazyTensorMappingTranspose
42
43 # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors?
44 Base.adjoint(tm::TensorMapping) = LazyTensorMappingTranspose(tm)
45 Base.adjoint(tmt::LazyTensorMappingTranspose) = tmt.tm
46
47 apply(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg{Index,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...)
48 apply_transpose(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} = apply(tmt.tm, v, I...)
49
50 range_size(tmt::LazyTensorMappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, d_size)
51 domain_size(tmt::LazyTensorMappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, r_size)
52
53
54
55
56 struct LazyTensorMappingBinaryOperation{Op,T,R,D,T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R}
57 tm1::T1
58 tm2::T2
59
60 @inline function LazyTensorMappingBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}}
61 return new{Op,T,R,D,T1,T2}(tm1,tm2)
62 end
63 end
64
65 apply(tmBinOp::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...)
66 apply(tmBinOp::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...)
67
68 range_size(tmBinOp::LazyTensorMappingBinaryOperation{Op,T,R,D}, domain_size::NTuple{D,Integer}) where {Op,T,R,D} = range_size(tmBinOp.tm1, domain_size)
69 domain_size(tmBinOp::LazyTensorMappingBinaryOperation{Op,T,R,D}, range_size::NTuple{R,Integer}) where {Op,T,R,D} = domain_size(tmBinOp.tm2, range_size)
70
71 Base.:+(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:+,T,R,D}(tm1,tm2)
72 Base.:-(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:-,T,R,D}(tm1,tm2)
73
74
75 # TODO: Write tests and documentation for LazyTensorMappingComposition
76 # struct LazyTensorMappingComposition{T,R,K,D} <: TensorMapping{T,R,D}
77 # t1::TensorMapping{T,R,K}
78 # t2::TensorMapping{T,K,D}
79 # end
80
81 # Base.:∘(s::TensorMapping{T,R,K}, t::TensorMapping{T,K,D}) where {T,R,K,D} = LazyTensorMappingComposition(s,t)
82
83 # function range_size(tm::LazyTensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D}
84 # range_size(tm.t1, domain_size(tm.t2, domain_size))
85 # end
86
87 # function domain_size(tm::LazyTensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D}
88 # domain_size(tm.t1, domain_size(tm.t2, range_size))
89 # end
90
91 # function apply(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::NTuple{R,Int}) where {T,R,K,D}
92 # apply(c.t1, LazyTensorMappingApplication(c.t2,v), I...)
93 # end
94
95 # function apply_transpose(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::NTuple{D,Int}) where {T,R,K,D}
96 # apply_transpose(c.t2, LazyTensorMappingApplication(c.t1',v), I...)
97 # end
98
99 # # Have i gone too crazy with the type parameters? Maybe they aren't all needed?
100
101 # export →