Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/volume_operator_test.jl @ 769:0158c3fd521c operator_storage_array_of_table
Merge in default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 15 Jul 2021 00:06:16 +0200 |
parents | 80d88bb1c5bd |
children | e7176fb09e98 469ed954b493 |
comparison
equal
deleted
inserted
replaced
768:7c87a33963c5 | 769:0158c3fd521c |
---|---|
1 using Test | |
2 | |
3 using Sbplib.SbpOperators | |
4 using Sbplib.Grids | |
5 using Sbplib.RegionIndices | |
6 using Sbplib.LazyTensors | |
7 | |
8 import Sbplib.SbpOperators.Stencil | |
9 import Sbplib.SbpOperators.VolumeOperator | |
10 import Sbplib.SbpOperators.volume_operator | |
11 import Sbplib.SbpOperators.odd | |
12 import Sbplib.SbpOperators.even | |
13 | |
14 @testset "VolumeOperator" begin | |
15 inner_stencil = CenteredStencil(1/4, 2/4, 1/4) | |
16 closure_stencils = (Stencil(1/2, 1/2; center=1), Stencil(0.,1.; center=2)) | |
17 g_1D = EquidistantGrid(11,0.,1.) | |
18 g_2D = EquidistantGrid((11,12),(0.,0.),(1.,1.)) | |
19 g_3D = EquidistantGrid((11,12,10),(0.,0.,0.),(1.,1.,1.)) | |
20 @testset "Constructors" begin | |
21 @testset "1D" begin | |
22 op = VolumeOperator(inner_stencil,closure_stencils,(11,),even) | |
23 @test op == VolumeOperator(g_1D,inner_stencil,closure_stencils,even) | |
24 @test op == volume_operator(g_1D,inner_stencil,closure_stencils,even,1) | |
25 @test op isa TensorMapping{T,1,1} where T | |
26 end | |
27 @testset "2D" begin | |
28 op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) | |
29 op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2) | |
30 Ix = IdentityMapping{Float64}((11,)) | |
31 Iy = IdentityMapping{Float64}((12,)) | |
32 @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy | |
33 @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even) | |
34 @test op_x isa TensorMapping{T,2,2} where T | |
35 @test op_y isa TensorMapping{T,2,2} where T | |
36 end | |
37 @testset "3D" begin | |
38 op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1) | |
39 op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2) | |
40 op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3) | |
41 Ix = IdentityMapping{Float64}((11,)) | |
42 Iy = IdentityMapping{Float64}((12,)) | |
43 Iz = IdentityMapping{Float64}((10,)) | |
44 @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy⊗Iz | |
45 @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even)⊗Iz | |
46 @test op_z == Ix⊗Iy⊗VolumeOperator(inner_stencil,closure_stencils,(10,),even) | |
47 @test op_x isa TensorMapping{T,3,3} where T | |
48 @test op_y isa TensorMapping{T,3,3} where T | |
49 @test op_z isa TensorMapping{T,3,3} where T | |
50 end | |
51 end | |
52 | |
53 @testset "Sizes" begin | |
54 @testset "1D" begin | |
55 op = volume_operator(g_1D,inner_stencil,closure_stencils,even,1) | |
56 @test range_size(op) == domain_size(op) == size(g_1D) | |
57 end | |
58 | |
59 @testset "2D" begin | |
60 op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) | |
61 op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2) | |
62 @test range_size(op_y) == domain_size(op_y) == | |
63 range_size(op_x) == domain_size(op_x) == size(g_2D) | |
64 end | |
65 @testset "3D" begin | |
66 op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1) | |
67 op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2) | |
68 op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3) | |
69 @test range_size(op_z) == domain_size(op_z) == | |
70 range_size(op_y) == domain_size(op_y) == | |
71 range_size(op_x) == domain_size(op_x) == size(g_3D) | |
72 end | |
73 end | |
74 | |
75 op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) | |
76 op_y = volume_operator(g_2D,inner_stencil,closure_stencils,odd,2) | |
77 v = zeros(size(g_2D)) | |
78 Nx = size(g_2D)[1] | |
79 Ny = size(g_2D)[2] | |
80 for i = 1:Nx | |
81 v[i,:] .= i | |
82 end | |
83 rx = copy(v) | |
84 rx[1,:] .= 1.5 | |
85 rx[Nx,:] .= (2*Nx-1)/2 | |
86 ry = copy(v) | |
87 ry[:,Ny-1:Ny] = -v[:,Ny-1:Ny] | |
88 | |
89 @testset "Application" begin | |
90 @test op_x*v ≈ rx rtol = 1e-14 | |
91 @test op_y*v ≈ ry rtol = 1e-14 | |
92 end | |
93 | |
94 @testset "Regions" begin | |
95 @test (op_x*v)[Index(1,Lower),Index(3,Interior)] ≈ rx[1,3] rtol = 1e-14 | |
96 @test (op_x*v)[Index(2,Lower),Index(3,Interior)] ≈ rx[2,3] rtol = 1e-14 | |
97 @test (op_x*v)[Index(6,Interior),Index(3,Interior)] ≈ rx[6,3] rtol = 1e-14 | |
98 @test (op_x*v)[Index(10,Upper),Index(3,Interior)] ≈ rx[10,3] rtol = 1e-14 | |
99 @test (op_x*v)[Index(11,Upper),Index(3,Interior)] ≈ rx[11,3] rtol = 1e-14 | |
100 | |
101 @test_throws BoundsError (op_x*v)[Index(3,Lower),Index(3,Interior)] | |
102 @test_throws BoundsError (op_x*v)[Index(9,Upper),Index(3,Interior)] | |
103 | |
104 @test (op_y*v)[Index(3,Interior),Index(1,Lower)] ≈ ry[3,1] rtol = 1e-14 | |
105 @test (op_y*v)[Index(3,Interior),Index(2,Lower)] ≈ ry[3,2] rtol = 1e-14 | |
106 @test (op_y*v)[Index(3,Interior),Index(6,Interior)] ≈ ry[3,6] rtol = 1e-14 | |
107 @test (op_y*v)[Index(3,Interior),Index(11,Upper)] ≈ ry[3,11] rtol = 1e-14 | |
108 @test (op_y*v)[Index(3,Interior),Index(12,Upper)] ≈ ry[3,12] rtol = 1e-14 | |
109 | |
110 @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(10,Upper)] | |
111 @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(3,Lower)] | |
112 end | |
113 | |
114 @testset "Inferred" begin | |
115 @test_skip @inferred apply(op_x, v,1,1) | |
116 @inferred apply(op_x, v, Index(1,Lower),Index(1,Lower)) | |
117 @inferred apply(op_x, v, Index(6,Interior),Index(1,Lower)) | |
118 @inferred apply(op_x, v, Index(11,Upper),Index(1,Lower)) | |
119 @test_skip @inferred apply(op_y, v,1,1) | |
120 @inferred apply(op_y, v, Index(1,Lower),Index(1,Lower)) | |
121 @inferred apply(op_y, v, Index(1,Lower),Index(6,Interior)) | |
122 @inferred apply(op_y, v, Index(1,Lower),Index(11,Upper)) | |
123 end | |
124 end |