Mercurial > repos > public > sbplib_julia
comparison test/LazyTensors/lazy_tensor_operations_test.jl @ 769:0158c3fd521c operator_storage_array_of_table
Merge in default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 15 Jul 2021 00:06:16 +0200 |
parents | de2df1214394 |
children | 4a9a96d51940 7829c09f8137 |
comparison
equal
deleted
inserted
replaced
768:7c87a33963c5 | 769:0158c3fd521c |
---|---|
1 using Test | |
2 using Sbplib.LazyTensors | |
3 using Sbplib.RegionIndices | |
4 | |
5 using Tullio | |
6 | |
7 @testset "Mapping transpose" begin | |
8 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | |
9 | |
10 LazyTensors.apply(m::DummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply | |
11 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose | |
12 | |
13 LazyTensors.range_size(m::DummyMapping) = :range_size | |
14 LazyTensors.domain_size(m::DummyMapping) = :domain_size | |
15 | |
16 m = DummyMapping{Float64,2,3}() | |
17 @test m' isa TensorMapping{Float64, 3,2} | |
18 @test m'' == m | |
19 @test apply(m',zeros(Float64,(0,0)), 0, 0, 0) == :apply_transpose | |
20 @test apply(m'',zeros(Float64,(0,0,0)), 0, 0) == :apply | |
21 @test apply_transpose(m', zeros(Float64,(0,0,0)), 0, 0) == :apply | |
22 | |
23 @test range_size(m') == :domain_size | |
24 @test domain_size(m') == :range_size | |
25 end | |
26 | |
27 @testset "TensorApplication" begin | |
28 struct SizeDoublingMapping{T,R,D} <: TensorMapping{T,R,D} | |
29 domain_size::NTuple{D,Int} | |
30 end | |
31 | |
32 LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i) | |
33 LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size | |
34 LazyTensors.domain_size(m::SizeDoublingMapping) = m.domain_size | |
35 | |
36 | |
37 m = SizeDoublingMapping{Int, 1, 1}((3,)) | |
38 v = [0,1,2] | |
39 @test m*v isa AbstractVector{Int} | |
40 @test size(m*v) == 2 .*size(v) | |
41 @test (m*v)[0] == (:apply,v,(0,)) | |
42 @test m*m*v isa AbstractVector{Int} | |
43 @test (m*m*v)[1] == (:apply,m*v,(1,)) | |
44 @test (m*m*v)[3] == (:apply,m*v,(3,)) | |
45 @test (m*m*v)[6] == (:apply,m*v,(6,)) | |
46 @test_broken BoundsError == (m*m*v)[0] | |
47 @test_broken BoundsError == (m*m*v)[7] | |
48 @test_throws MethodError m*m | |
49 | |
50 m = SizeDoublingMapping{Int, 2, 1}((3,)) | |
51 @test_throws MethodError m*ones(Int,2,2) | |
52 @test_throws MethodError m*m*v | |
53 | |
54 m = SizeDoublingMapping{Float64, 2, 2}((3,3)) | |
55 v = ones(3,3) | |
56 @test size(m*v) == 2 .*size(v) | |
57 @test (m*v)[1,2] == (:apply,v,(1,2)) | |
58 | |
59 struct ScalingOperator{T,D} <: TensorMapping{T,D,D} | |
60 λ::T | |
61 size::NTuple{D,Int} | |
62 end | |
63 | |
64 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] | |
65 LazyTensors.range_size(m::ScalingOperator) = m.size | |
66 LazyTensors.domain_size(m::ScalingOperator) = m.size | |
67 | |
68 m = ScalingOperator{Int,1}(2,(3,)) | |
69 v = [1,2,3] | |
70 @test m*v isa AbstractVector | |
71 @test m*v == [2,4,6] | |
72 | |
73 m = ScalingOperator{Int,2}(2,(2,2)) | |
74 v = [[1 2];[3 4]] | |
75 @test m*v == [[2 4];[6 8]] | |
76 @test (m*v)[2,1] == 6 | |
77 end | |
78 | |
79 @testset "TensorMapping binary operations" begin | |
80 struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D} | |
81 λ::T | |
82 range_size::NTuple{R,Int} | |
83 domain_size::NTuple{D,Int} | |
84 end | |
85 | |
86 LazyTensors.apply(m::ScalarMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = m.λ*v[I...] | |
87 LazyTensors.range_size(m::ScalarMapping) = m.domain_size | |
88 LazyTensors.domain_size(m::ScalarMapping) = m.range_size | |
89 | |
90 A = ScalarMapping{Float64,1,1}(2.0, (3,), (3,)) | |
91 B = ScalarMapping{Float64,1,1}(3.0, (3,), (3,)) | |
92 | |
93 v = [1.1,1.2,1.3] | |
94 for i ∈ eachindex(v) | |
95 @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] | |
96 end | |
97 | |
98 for i ∈ eachindex(v) | |
99 @test ((A-B)*v)[i] == 2*v[i] - 3*v[i] | |
100 end | |
101 | |
102 @test range_size(A+B) == range_size(A) == range_size(B) | |
103 @test domain_size(A+B) == domain_size(A) == domain_size(B) | |
104 end | |
105 | |
106 | |
107 @testset "TensorMappingComposition" begin | |
108 A = rand(2,3) | |
109 B = rand(3,4) | |
110 | |
111 Ã = LazyLinearMap(A, (1,), (2,)) | |
112 B̃ = LazyLinearMap(B, (1,), (2,)) | |
113 | |
114 @test Ã∘B̃ isa TensorMappingComposition | |
115 @test range_size(Ã∘B̃) == (2,) | |
116 @test domain_size(Ã∘B̃) == (4,) | |
117 @test_throws SizeMismatch B̃∘Ã | |
118 | |
119 # @test @inbounds B̃∘Ã # Should not error even though dimensions don't match. (Since ]test runs with forced boundschecking this is currently not testable 2020-10-16) | |
120 | |
121 v = rand(4) | |
122 @test Ã∘B̃*v ≈ A*B*v rtol=1e-14 | |
123 | |
124 v = rand(2) | |
125 @test (Ã∘B̃)'*v ≈ B'*A'*v rtol=1e-14 | |
126 end | |
127 | |
128 @testset "LazyLinearMap" begin | |
129 # Test a standard matrix-vector product | |
130 # mapping vectors of size 4 to vectors of size 3. | |
131 A = rand(3,4) | |
132 Ã = LazyLinearMap(A, (1,), (2,)) | |
133 v = rand(4) | |
134 w = rand(3) | |
135 | |
136 @test à isa LazyLinearMap{T,1,1} where T | |
137 @test à isa TensorMapping{T,1,1} where T | |
138 @test range_size(Ã) == (3,) | |
139 @test domain_size(Ã) == (4,) | |
140 | |
141 @test Ã*ones(4) ≈ A*ones(4) atol=5e-13 | |
142 @test Ã*v ≈ A*v atol=5e-13 | |
143 @test Ã'*w ≈ A'*w | |
144 | |
145 A = rand(2,3,4) | |
146 @test_throws DomainError LazyLinearMap(A, (3,1), (2,)) | |
147 | |
148 # Test more exotic mappings | |
149 B = rand(3,4,2) | |
150 # Map vectors of size 2 to matrices of size (3,4) | |
151 B̃ = LazyLinearMap(B, (1,2), (3,)) | |
152 v = rand(2) | |
153 | |
154 @test range_size(B̃) == (3,4) | |
155 @test domain_size(B̃) == (2,) | |
156 @test B̃ isa TensorMapping{T,2,1} where T | |
157 @test B̃*ones(2) ≈ B[:,:,1] + B[:,:,2] atol=5e-13 | |
158 @test B̃*v ≈ B[:,:,1]*v[1] + B[:,:,2]*v[2] atol=5e-13 | |
159 | |
160 # Map matrices of size (3,2) to vectors of size 4 | |
161 B̃ = LazyLinearMap(B, (2,), (1,3)) | |
162 v = rand(3,2) | |
163 | |
164 @test range_size(B̃) == (4,) | |
165 @test domain_size(B̃) == (3,2) | |
166 @test B̃ isa TensorMapping{T,1,2} where T | |
167 @test B̃*ones(3,2) ≈ B[1,:,1] + B[2,:,1] + B[3,:,1] + | |
168 B[1,:,2] + B[2,:,2] + B[3,:,2] atol=5e-13 | |
169 @test B̃*v ≈ B[1,:,1]*v[1,1] + B[2,:,1]*v[2,1] + B[3,:,1]*v[3,1] + | |
170 B[1,:,2]v[1,2] + B[2,:,2]*v[2,2] + B[3,:,2]*v[3,2] atol=5e-13 | |
171 | |
172 | |
173 # TODO: | |
174 # @inferred (B̃*v)[2] | |
175 end | |
176 | |
177 | |
178 @testset "IdentityMapping" begin | |
179 @test IdentityMapping{Float64}((4,5)) isa IdentityMapping{T,2} where T | |
180 @test IdentityMapping{Float64}((4,5)) isa TensorMapping{T,2,2} where T | |
181 @test IdentityMapping{Float64}((4,5)) == IdentityMapping{Float64}(4,5) | |
182 | |
183 @test IdentityMapping(3,2) isa IdentityMapping{Float64,2} | |
184 | |
185 for sz ∈ [(4,5),(3,),(5,6,4)] | |
186 I = IdentityMapping{Float64}(sz) | |
187 v = rand(sz...) | |
188 @test I*v == v | |
189 @test I'*v == v | |
190 | |
191 @test range_size(I) == sz | |
192 @test domain_size(I) == sz | |
193 end | |
194 | |
195 I = IdentityMapping{Float64}((4,5)) | |
196 v = rand(4,5) | |
197 @inferred (I*v)[3,2] | |
198 @inferred (I'*v)[3,2] | |
199 @inferred range_size(I) | |
200 | |
201 @inferred range_dim(I) | |
202 @inferred domain_dim(I) | |
203 | |
204 Ã = rand(4,2) | |
205 A = LazyLinearMap(Ã,(1,),(2,)) | |
206 I1 = IdentityMapping{Float64}(2) | |
207 I2 = IdentityMapping{Float64}(4) | |
208 @test A∘I1 == A | |
209 @test I2∘A == A | |
210 @test I1∘I1 == I1 | |
211 @test_throws SizeMismatch I1∘A | |
212 @test_throws SizeMismatch A∘I2 | |
213 @test_throws SizeMismatch I1∘I2 | |
214 end | |
215 | |
216 @testset "InflatedTensorMapping" begin | |
217 I(sz...) = IdentityMapping(sz...) | |
218 | |
219 Ã = rand(4,2) | |
220 B̃ = rand(4,2,3) | |
221 C̃ = rand(4,2,3) | |
222 | |
223 A = LazyLinearMap(Ã,(1,),(2,)) | |
224 B = LazyLinearMap(B̃,(1,2),(3,)) | |
225 C = LazyLinearMap(C̃,(1,),(2,3)) | |
226 | |
227 @testset "Constructors" begin | |
228 @test InflatedTensorMapping(I(3,2), A, I(4)) isa TensorMapping{Float64, 4, 4} | |
229 @test InflatedTensorMapping(I(3,2), B, I(4)) isa TensorMapping{Float64, 5, 4} | |
230 @test InflatedTensorMapping(I(3), C, I(2,3)) isa TensorMapping{Float64, 4, 5} | |
231 @test InflatedTensorMapping(C, I(2,3)) isa TensorMapping{Float64, 3, 4} | |
232 @test InflatedTensorMapping(I(3), C) isa TensorMapping{Float64, 2, 3} | |
233 @test InflatedTensorMapping(I(3), I(2,3)) isa TensorMapping{Float64, 3, 3} | |
234 end | |
235 | |
236 @testset "Range and domain size" begin | |
237 @test range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) | |
238 @test domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) | |
239 | |
240 @test range_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,4,2,4) | |
241 @test domain_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,3,4) | |
242 | |
243 @test range_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,4,2,3) | |
244 @test domain_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,2,3,2,3) | |
245 | |
246 @inferred range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) | |
247 @inferred domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) | |
248 end | |
249 | |
250 @testset "Application" begin | |
251 # Testing regular application and transposed application with inflation "before", "after" and "before and after". | |
252 # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input. | |
253 tests = [ | |
254 ( | |
255 InflatedTensorMapping(I(3,2), A, I(4)), | |
256 (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply | |
257 (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose | |
258 ), | |
259 ( | |
260 InflatedTensorMapping(I(3,2), B, I(4)), | |
261 (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]), | |
262 (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]), | |
263 ), | |
264 ( | |
265 InflatedTensorMapping(I(3,2), C, I(4)), | |
266 (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]), | |
267 (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]), | |
268 ), | |
269 ( | |
270 InflatedTensorMapping(I(3,2), A), | |
271 (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]), | |
272 (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]), | |
273 ), | |
274 ( | |
275 InflatedTensorMapping(I(3,2), B), | |
276 (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]), | |
277 (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]), | |
278 ), | |
279 ( | |
280 InflatedTensorMapping(I(3,2), C), | |
281 (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]), | |
282 (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]), | |
283 ), | |
284 ( | |
285 InflatedTensorMapping(A,I(4)), | |
286 (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]), | |
287 (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]), | |
288 ), | |
289 ( | |
290 InflatedTensorMapping(B,I(4)), | |
291 (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]), | |
292 (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]), | |
293 ), | |
294 ( | |
295 InflatedTensorMapping(C,I(4)), | |
296 (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]), | |
297 (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]), | |
298 ), | |
299 ] | |
300 | |
301 @testset "apply" begin | |
302 for i ∈ 1:length(tests) | |
303 tm = tests[i][1] | |
304 v = rand(domain_size(tm)...) | |
305 true_value = tests[i][2](v) | |
306 @test tm*v ≈ true_value rtol=1e-14 | |
307 end | |
308 end | |
309 | |
310 @testset "apply_transpose" begin | |
311 for i ∈ 1:length(tests) | |
312 tm = tests[i][1] | |
313 v = rand(range_size(tm)...) | |
314 true_value = tests[i][3](v) | |
315 @test tm'*v ≈ true_value rtol=1e-14 | |
316 end | |
317 end | |
318 | |
319 @testset "Inference of application" begin | |
320 struct ScalingOperator{T,D} <: TensorMapping{T,D,D} | |
321 λ::T | |
322 size::NTuple{D,Int} | |
323 end | |
324 | |
325 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] | |
326 LazyTensors.range_size(m::ScalingOperator) = m.size | |
327 LazyTensors.domain_size(m::ScalingOperator) = m.size | |
328 | |
329 tm = InflatedTensorMapping(I(2,3),ScalingOperator(2.0, (3,2)),I(3,4)) | |
330 v = rand(domain_size(tm)...) | |
331 | |
332 @inferred apply(tm,v,1,2,3,2,2,4) | |
333 @inferred (tm*v)[1,2,3,2,2,4] | |
334 end | |
335 end | |
336 | |
337 @testset "InflatedTensorMapping of InflatedTensorMapping" begin | |
338 A = ScalingOperator(2.0,(2,3)) | |
339 itm = InflatedTensorMapping(I(3,2), A, I(4)) | |
340 @test InflatedTensorMapping(I(4), itm, I(2)) == InflatedTensorMapping(I(4,3,2), A, I(4,2)) | |
341 @test InflatedTensorMapping(itm, I(2)) == InflatedTensorMapping(I(3,2), A, I(4,2)) | |
342 @test InflatedTensorMapping(I(4), itm) == InflatedTensorMapping(I(4,3,2), A, I(4)) | |
343 | |
344 @test InflatedTensorMapping(I(2), I(2), I(2)) isa InflatedTensorMapping # The constructor should always return its type. | |
345 end | |
346 end | |
347 | |
348 @testset "split_index" begin | |
349 @test LazyTensors.split_index(Val(2),Val(1),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,5,6),(3,4)) | |
350 @test LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,:,:,5,6),(3,4)) | |
351 @test LazyTensors.split_index(Val(3),Val(1),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,5,6),(4,)) | |
352 @test LazyTensors.split_index(Val(3),Val(2),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,:,5,6),(4,)) | |
353 @test LazyTensors.split_index(Val(1),Val(1),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,4,5,6),(2,3)) | |
354 @test LazyTensors.split_index(Val(1),Val(2),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,:,4,5,6),(2,3)) | |
355 | |
356 @test LazyTensors.split_index(Val(0),Val(1),Val(3),Val(3),1,2,3,4,5,6) == ((:,4,5,6),(1,2,3)) | |
357 @test LazyTensors.split_index(Val(3),Val(1),Val(3),Val(0),1,2,3,4,5,6) == ((1,2,3,:),(4,5,6)) | |
358 | |
359 @inferred LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,2,2,4) | |
360 end | |
361 | |
362 @testset "slice_tuple" begin | |
363 @test LazyTensors.slice_tuple((1,2,3),Val(1), Val(3)) == (1,2,3) | |
364 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(2), Val(5)) == (2,3,4,5) | |
365 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(1), Val(3)) == (1,2,3) | |
366 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(4), Val(6)) == (4,5,6) | |
367 end | |
368 | |
369 @testset "split_tuple" begin | |
370 @testset "2 parts" begin | |
371 @test LazyTensors.split_tuple((),Val(0)) == ((),()) | |
372 @test LazyTensors.split_tuple((1,),Val(0)) == ((),(1,)) | |
373 @test LazyTensors.split_tuple((1,),Val(1)) == ((1,),()) | |
374 | |
375 @test LazyTensors.split_tuple((1,2,3,4),Val(0)) == ((),(1,2,3,4)) | |
376 @test LazyTensors.split_tuple((1,2,3,4),Val(1)) == ((1,),(2,3,4)) | |
377 @test LazyTensors.split_tuple((1,2,3,4),Val(2)) == ((1,2),(3,4)) | |
378 @test LazyTensors.split_tuple((1,2,3,4),Val(3)) == ((1,2,3),(4,)) | |
379 @test LazyTensors.split_tuple((1,2,3,4),Val(4)) == ((1,2,3,4),()) | |
380 | |
381 @test LazyTensors.split_tuple((1,2,true,4),Val(3)) == ((1,2,true),(4,)) | |
382 | |
383 @inferred LazyTensors.split_tuple((1,2,3,4),Val(3)) | |
384 @inferred LazyTensors.split_tuple((1,2,true,4),Val(3)) | |
385 end | |
386 | |
387 @testset "3 parts" begin | |
388 @test LazyTensors.split_tuple((),Val(0),Val(0)) == ((),(),()) | |
389 @test LazyTensors.split_tuple((1,2,3),Val(1), Val(1)) == ((1,),(2,),(3,)) | |
390 @test LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) == ((1,),(true,),(3,)) | |
391 | |
392 @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(1),Val(2)) == ((1,),(2,3),(4,5,6)) | |
393 @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) == ((1,2,3),(4,5),(6,)) | |
394 | |
395 @inferred LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) | |
396 @inferred LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) | |
397 end | |
398 end | |
399 | |
400 @testset "flatten_tuple" begin | |
401 @test LazyTensors.flatten_tuple((1,)) == (1,) | |
402 @test LazyTensors.flatten_tuple((1,2,3,4,5,6)) == (1,2,3,4,5,6) | |
403 @test LazyTensors.flatten_tuple((1,2,(3,4),5,6)) == (1,2,3,4,5,6) | |
404 @test LazyTensors.flatten_tuple((1,2,(3,(4,5)),6)) == (1,2,3,4,5,6) | |
405 @test LazyTensors.flatten_tuple(((1,2),(3,4),(5,),6)) == (1,2,3,4,5,6) | |
406 end | |
407 | |
408 | |
409 @testset "LazyOuterProduct" begin | |
410 struct ScalingOperator{T,D} <: TensorMapping{T,D,D} | |
411 λ::T | |
412 size::NTuple{D,Int} | |
413 end | |
414 | |
415 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] | |
416 LazyTensors.range_size(m::ScalingOperator) = m.size | |
417 LazyTensors.domain_size(m::ScalingOperator) = m.size | |
418 | |
419 A = ScalingOperator(2.0, (5,)) | |
420 B = ScalingOperator(3.0, (3,)) | |
421 C = ScalingOperator(5.0, (3,2)) | |
422 | |
423 AB = LazyOuterProduct(A,B) | |
424 @test AB isa TensorMapping{T,2,2} where T | |
425 @test range_size(AB) == (5,3) | |
426 @test domain_size(AB) == (5,3) | |
427 | |
428 v = rand(range_size(AB)...) | |
429 @test AB*v == 6*v | |
430 | |
431 ABC = LazyOuterProduct(A,B,C) | |
432 | |
433 @test ABC isa TensorMapping{T,4,4} where T | |
434 @test range_size(ABC) == (5,3,3,2) | |
435 @test domain_size(ABC) == (5,3,3,2) | |
436 | |
437 @test A⊗B == AB | |
438 @test A⊗B⊗C == ABC | |
439 | |
440 A = rand(3,2) | |
441 B = rand(2,4,3) | |
442 | |
443 v₁ = rand(2,4,3) | |
444 v₂ = rand(4,3,2) | |
445 | |
446 Ã = LazyLinearMap(A,(1,),(2,)) | |
447 B̃ = LazyLinearMap(B,(1,),(2,3)) | |
448 | |
449 ÃB̃ = LazyOuterProduct(Ã,B̃) | |
450 @tullio ABv[i,k] := A[i,j]*B[k,l,m]*v₁[j,l,m] | |
451 @test ÃB̃*v₁ ≈ ABv | |
452 | |
453 B̃Ã = LazyOuterProduct(B̃,Ã) | |
454 @tullio BAv[k,i] := A[i,j]*B[k,l,m]*v₂[l,m,j] | |
455 @test B̃Ã*v₂ ≈ BAv | |
456 | |
457 @testset "Indentity mapping arguments" begin | |
458 @test LazyOuterProduct(IdentityMapping(3,2), IdentityMapping(1,2)) == IdentityMapping(3,2,1,2) | |
459 | |
460 Ã = LazyLinearMap(A,(1,),(2,)) | |
461 @test LazyOuterProduct(IdentityMapping(3,2), Ã) == InflatedTensorMapping(IdentityMapping(3,2),Ã) | |
462 @test LazyOuterProduct(Ã, IdentityMapping(3,2)) == InflatedTensorMapping(Ã,IdentityMapping(3,2)) | |
463 | |
464 I1 = IdentityMapping(3,2) | |
465 I2 = IdentityMapping(4) | |
466 @test I1⊗Ã⊗I2 == InflatedTensorMapping(I1, Ã, I2) | |
467 end | |
468 | |
469 end |