comparison test/LazyTensors/lazy_tensor_operations_test.jl @ 769:0158c3fd521c operator_storage_array_of_table

Merge in default
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 15 Jul 2021 00:06:16 +0200
parents de2df1214394
children 4a9a96d51940 7829c09f8137
comparison
equal deleted inserted replaced
768:7c87a33963c5 769:0158c3fd521c
1 using Test
2 using Sbplib.LazyTensors
3 using Sbplib.RegionIndices
4
5 using Tullio
6
7 @testset "Mapping transpose" begin
8 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
9
10 LazyTensors.apply(m::DummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply
11 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose
12
13 LazyTensors.range_size(m::DummyMapping) = :range_size
14 LazyTensors.domain_size(m::DummyMapping) = :domain_size
15
16 m = DummyMapping{Float64,2,3}()
17 @test m' isa TensorMapping{Float64, 3,2}
18 @test m'' == m
19 @test apply(m',zeros(Float64,(0,0)), 0, 0, 0) == :apply_transpose
20 @test apply(m'',zeros(Float64,(0,0,0)), 0, 0) == :apply
21 @test apply_transpose(m', zeros(Float64,(0,0,0)), 0, 0) == :apply
22
23 @test range_size(m') == :domain_size
24 @test domain_size(m') == :range_size
25 end
26
27 @testset "TensorApplication" begin
28 struct SizeDoublingMapping{T,R,D} <: TensorMapping{T,R,D}
29 domain_size::NTuple{D,Int}
30 end
31
32 LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i)
33 LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size
34 LazyTensors.domain_size(m::SizeDoublingMapping) = m.domain_size
35
36
37 m = SizeDoublingMapping{Int, 1, 1}((3,))
38 v = [0,1,2]
39 @test m*v isa AbstractVector{Int}
40 @test size(m*v) == 2 .*size(v)
41 @test (m*v)[0] == (:apply,v,(0,))
42 @test m*m*v isa AbstractVector{Int}
43 @test (m*m*v)[1] == (:apply,m*v,(1,))
44 @test (m*m*v)[3] == (:apply,m*v,(3,))
45 @test (m*m*v)[6] == (:apply,m*v,(6,))
46 @test_broken BoundsError == (m*m*v)[0]
47 @test_broken BoundsError == (m*m*v)[7]
48 @test_throws MethodError m*m
49
50 m = SizeDoublingMapping{Int, 2, 1}((3,))
51 @test_throws MethodError m*ones(Int,2,2)
52 @test_throws MethodError m*m*v
53
54 m = SizeDoublingMapping{Float64, 2, 2}((3,3))
55 v = ones(3,3)
56 @test size(m*v) == 2 .*size(v)
57 @test (m*v)[1,2] == (:apply,v,(1,2))
58
59 struct ScalingOperator{T,D} <: TensorMapping{T,D,D}
60 λ::T
61 size::NTuple{D,Int}
62 end
63
64 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...]
65 LazyTensors.range_size(m::ScalingOperator) = m.size
66 LazyTensors.domain_size(m::ScalingOperator) = m.size
67
68 m = ScalingOperator{Int,1}(2,(3,))
69 v = [1,2,3]
70 @test m*v isa AbstractVector
71 @test m*v == [2,4,6]
72
73 m = ScalingOperator{Int,2}(2,(2,2))
74 v = [[1 2];[3 4]]
75 @test m*v == [[2 4];[6 8]]
76 @test (m*v)[2,1] == 6
77 end
78
79 @testset "TensorMapping binary operations" begin
80 struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D}
81 λ::T
82 range_size::NTuple{R,Int}
83 domain_size::NTuple{D,Int}
84 end
85
86 LazyTensors.apply(m::ScalarMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = m.λ*v[I...]
87 LazyTensors.range_size(m::ScalarMapping) = m.domain_size
88 LazyTensors.domain_size(m::ScalarMapping) = m.range_size
89
90 A = ScalarMapping{Float64,1,1}(2.0, (3,), (3,))
91 B = ScalarMapping{Float64,1,1}(3.0, (3,), (3,))
92
93 v = [1.1,1.2,1.3]
94 for i ∈ eachindex(v)
95 @test ((A+B)*v)[i] == 2*v[i] + 3*v[i]
96 end
97
98 for i ∈ eachindex(v)
99 @test ((A-B)*v)[i] == 2*v[i] - 3*v[i]
100 end
101
102 @test range_size(A+B) == range_size(A) == range_size(B)
103 @test domain_size(A+B) == domain_size(A) == domain_size(B)
104 end
105
106
107 @testset "TensorMappingComposition" begin
108 A = rand(2,3)
109 B = rand(3,4)
110
111 Ã = LazyLinearMap(A, (1,), (2,))
112 B̃ = LazyLinearMap(B, (1,), (2,))
113
114 @test Ã∘B̃ isa TensorMappingComposition
115 @test range_size(Ã∘B̃) == (2,)
116 @test domain_size(Ã∘B̃) == (4,)
117 @test_throws SizeMismatch B̃∘Ã
118
119 # @test @inbounds B̃∘Ã # Should not error even though dimensions don't match. (Since ]test runs with forced boundschecking this is currently not testable 2020-10-16)
120
121 v = rand(4)
122 @test Ã∘B̃*v ≈ A*B*v rtol=1e-14
123
124 v = rand(2)
125 @test (Ã∘B̃)'*v ≈ B'*A'*v rtol=1e-14
126 end
127
128 @testset "LazyLinearMap" begin
129 # Test a standard matrix-vector product
130 # mapping vectors of size 4 to vectors of size 3.
131 A = rand(3,4)
132 Ã = LazyLinearMap(A, (1,), (2,))
133 v = rand(4)
134 w = rand(3)
135
136 @test à isa LazyLinearMap{T,1,1} where T
137 @test à isa TensorMapping{T,1,1} where T
138 @test range_size(Ã) == (3,)
139 @test domain_size(Ã) == (4,)
140
141 @test Ã*ones(4) ≈ A*ones(4) atol=5e-13
142 @test Ã*v ≈ A*v atol=5e-13
143 @test Ã'*w ≈ A'*w
144
145 A = rand(2,3,4)
146 @test_throws DomainError LazyLinearMap(A, (3,1), (2,))
147
148 # Test more exotic mappings
149 B = rand(3,4,2)
150 # Map vectors of size 2 to matrices of size (3,4)
151 B̃ = LazyLinearMap(B, (1,2), (3,))
152 v = rand(2)
153
154 @test range_size(B̃) == (3,4)
155 @test domain_size(B̃) == (2,)
156 @test B̃ isa TensorMapping{T,2,1} where T
157 @test B̃*ones(2) ≈ B[:,:,1] + B[:,:,2] atol=5e-13
158 @test B̃*v ≈ B[:,:,1]*v[1] + B[:,:,2]*v[2] atol=5e-13
159
160 # Map matrices of size (3,2) to vectors of size 4
161 B̃ = LazyLinearMap(B, (2,), (1,3))
162 v = rand(3,2)
163
164 @test range_size(B̃) == (4,)
165 @test domain_size(B̃) == (3,2)
166 @test B̃ isa TensorMapping{T,1,2} where T
167 @test B̃*ones(3,2) ≈ B[1,:,1] + B[2,:,1] + B[3,:,1] +
168 B[1,:,2] + B[2,:,2] + B[3,:,2] atol=5e-13
169 @test B̃*v ≈ B[1,:,1]*v[1,1] + B[2,:,1]*v[2,1] + B[3,:,1]*v[3,1] +
170 B[1,:,2]v[1,2] + B[2,:,2]*v[2,2] + B[3,:,2]*v[3,2] atol=5e-13
171
172
173 # TODO:
174 # @inferred (B̃*v)[2]
175 end
176
177
178 @testset "IdentityMapping" begin
179 @test IdentityMapping{Float64}((4,5)) isa IdentityMapping{T,2} where T
180 @test IdentityMapping{Float64}((4,5)) isa TensorMapping{T,2,2} where T
181 @test IdentityMapping{Float64}((4,5)) == IdentityMapping{Float64}(4,5)
182
183 @test IdentityMapping(3,2) isa IdentityMapping{Float64,2}
184
185 for sz ∈ [(4,5),(3,),(5,6,4)]
186 I = IdentityMapping{Float64}(sz)
187 v = rand(sz...)
188 @test I*v == v
189 @test I'*v == v
190
191 @test range_size(I) == sz
192 @test domain_size(I) == sz
193 end
194
195 I = IdentityMapping{Float64}((4,5))
196 v = rand(4,5)
197 @inferred (I*v)[3,2]
198 @inferred (I'*v)[3,2]
199 @inferred range_size(I)
200
201 @inferred range_dim(I)
202 @inferred domain_dim(I)
203
204 Ã = rand(4,2)
205 A = LazyLinearMap(Ã,(1,),(2,))
206 I1 = IdentityMapping{Float64}(2)
207 I2 = IdentityMapping{Float64}(4)
208 @test A∘I1 == A
209 @test I2∘A == A
210 @test I1∘I1 == I1
211 @test_throws SizeMismatch I1∘A
212 @test_throws SizeMismatch A∘I2
213 @test_throws SizeMismatch I1∘I2
214 end
215
216 @testset "InflatedTensorMapping" begin
217 I(sz...) = IdentityMapping(sz...)
218
219 Ã = rand(4,2)
220 B̃ = rand(4,2,3)
221 C̃ = rand(4,2,3)
222
223 A = LazyLinearMap(Ã,(1,),(2,))
224 B = LazyLinearMap(B̃,(1,2),(3,))
225 C = LazyLinearMap(C̃,(1,),(2,3))
226
227 @testset "Constructors" begin
228 @test InflatedTensorMapping(I(3,2), A, I(4)) isa TensorMapping{Float64, 4, 4}
229 @test InflatedTensorMapping(I(3,2), B, I(4)) isa TensorMapping{Float64, 5, 4}
230 @test InflatedTensorMapping(I(3), C, I(2,3)) isa TensorMapping{Float64, 4, 5}
231 @test InflatedTensorMapping(C, I(2,3)) isa TensorMapping{Float64, 3, 4}
232 @test InflatedTensorMapping(I(3), C) isa TensorMapping{Float64, 2, 3}
233 @test InflatedTensorMapping(I(3), I(2,3)) isa TensorMapping{Float64, 3, 3}
234 end
235
236 @testset "Range and domain size" begin
237 @test range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4)
238 @test domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4)
239
240 @test range_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,4,2,4)
241 @test domain_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,3,4)
242
243 @test range_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,4,2,3)
244 @test domain_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,2,3,2,3)
245
246 @inferred range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4)
247 @inferred domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4)
248 end
249
250 @testset "Application" begin
251 # Testing regular application and transposed application with inflation "before", "after" and "before and after".
252 # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input.
253 tests = [
254 (
255 InflatedTensorMapping(I(3,2), A, I(4)),
256 (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply
257 (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose
258 ),
259 (
260 InflatedTensorMapping(I(3,2), B, I(4)),
261 (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]),
262 (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]),
263 ),
264 (
265 InflatedTensorMapping(I(3,2), C, I(4)),
266 (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]),
267 (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]),
268 ),
269 (
270 InflatedTensorMapping(I(3,2), A),
271 (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]),
272 (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]),
273 ),
274 (
275 InflatedTensorMapping(I(3,2), B),
276 (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]),
277 (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]),
278 ),
279 (
280 InflatedTensorMapping(I(3,2), C),
281 (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]),
282 (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]),
283 ),
284 (
285 InflatedTensorMapping(A,I(4)),
286 (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]),
287 (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]),
288 ),
289 (
290 InflatedTensorMapping(B,I(4)),
291 (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]),
292 (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]),
293 ),
294 (
295 InflatedTensorMapping(C,I(4)),
296 (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]),
297 (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]),
298 ),
299 ]
300
301 @testset "apply" begin
302 for i ∈ 1:length(tests)
303 tm = tests[i][1]
304 v = rand(domain_size(tm)...)
305 true_value = tests[i][2](v)
306 @test tm*v ≈ true_value rtol=1e-14
307 end
308 end
309
310 @testset "apply_transpose" begin
311 for i ∈ 1:length(tests)
312 tm = tests[i][1]
313 v = rand(range_size(tm)...)
314 true_value = tests[i][3](v)
315 @test tm'*v ≈ true_value rtol=1e-14
316 end
317 end
318
319 @testset "Inference of application" begin
320 struct ScalingOperator{T,D} <: TensorMapping{T,D,D}
321 λ::T
322 size::NTuple{D,Int}
323 end
324
325 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...]
326 LazyTensors.range_size(m::ScalingOperator) = m.size
327 LazyTensors.domain_size(m::ScalingOperator) = m.size
328
329 tm = InflatedTensorMapping(I(2,3),ScalingOperator(2.0, (3,2)),I(3,4))
330 v = rand(domain_size(tm)...)
331
332 @inferred apply(tm,v,1,2,3,2,2,4)
333 @inferred (tm*v)[1,2,3,2,2,4]
334 end
335 end
336
337 @testset "InflatedTensorMapping of InflatedTensorMapping" begin
338 A = ScalingOperator(2.0,(2,3))
339 itm = InflatedTensorMapping(I(3,2), A, I(4))
340 @test InflatedTensorMapping(I(4), itm, I(2)) == InflatedTensorMapping(I(4,3,2), A, I(4,2))
341 @test InflatedTensorMapping(itm, I(2)) == InflatedTensorMapping(I(3,2), A, I(4,2))
342 @test InflatedTensorMapping(I(4), itm) == InflatedTensorMapping(I(4,3,2), A, I(4))
343
344 @test InflatedTensorMapping(I(2), I(2), I(2)) isa InflatedTensorMapping # The constructor should always return its type.
345 end
346 end
347
348 @testset "split_index" begin
349 @test LazyTensors.split_index(Val(2),Val(1),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,5,6),(3,4))
350 @test LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,:,:,5,6),(3,4))
351 @test LazyTensors.split_index(Val(3),Val(1),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,5,6),(4,))
352 @test LazyTensors.split_index(Val(3),Val(2),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,:,5,6),(4,))
353 @test LazyTensors.split_index(Val(1),Val(1),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,4,5,6),(2,3))
354 @test LazyTensors.split_index(Val(1),Val(2),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,:,4,5,6),(2,3))
355
356 @test LazyTensors.split_index(Val(0),Val(1),Val(3),Val(3),1,2,3,4,5,6) == ((:,4,5,6),(1,2,3))
357 @test LazyTensors.split_index(Val(3),Val(1),Val(3),Val(0),1,2,3,4,5,6) == ((1,2,3,:),(4,5,6))
358
359 @inferred LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,2,2,4)
360 end
361
362 @testset "slice_tuple" begin
363 @test LazyTensors.slice_tuple((1,2,3),Val(1), Val(3)) == (1,2,3)
364 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(2), Val(5)) == (2,3,4,5)
365 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(1), Val(3)) == (1,2,3)
366 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(4), Val(6)) == (4,5,6)
367 end
368
369 @testset "split_tuple" begin
370 @testset "2 parts" begin
371 @test LazyTensors.split_tuple((),Val(0)) == ((),())
372 @test LazyTensors.split_tuple((1,),Val(0)) == ((),(1,))
373 @test LazyTensors.split_tuple((1,),Val(1)) == ((1,),())
374
375 @test LazyTensors.split_tuple((1,2,3,4),Val(0)) == ((),(1,2,3,4))
376 @test LazyTensors.split_tuple((1,2,3,4),Val(1)) == ((1,),(2,3,4))
377 @test LazyTensors.split_tuple((1,2,3,4),Val(2)) == ((1,2),(3,4))
378 @test LazyTensors.split_tuple((1,2,3,4),Val(3)) == ((1,2,3),(4,))
379 @test LazyTensors.split_tuple((1,2,3,4),Val(4)) == ((1,2,3,4),())
380
381 @test LazyTensors.split_tuple((1,2,true,4),Val(3)) == ((1,2,true),(4,))
382
383 @inferred LazyTensors.split_tuple((1,2,3,4),Val(3))
384 @inferred LazyTensors.split_tuple((1,2,true,4),Val(3))
385 end
386
387 @testset "3 parts" begin
388 @test LazyTensors.split_tuple((),Val(0),Val(0)) == ((),(),())
389 @test LazyTensors.split_tuple((1,2,3),Val(1), Val(1)) == ((1,),(2,),(3,))
390 @test LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) == ((1,),(true,),(3,))
391
392 @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(1),Val(2)) == ((1,),(2,3),(4,5,6))
393 @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) == ((1,2,3),(4,5),(6,))
394
395 @inferred LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2))
396 @inferred LazyTensors.split_tuple((1,true,3),Val(1), Val(1))
397 end
398 end
399
400 @testset "flatten_tuple" begin
401 @test LazyTensors.flatten_tuple((1,)) == (1,)
402 @test LazyTensors.flatten_tuple((1,2,3,4,5,6)) == (1,2,3,4,5,6)
403 @test LazyTensors.flatten_tuple((1,2,(3,4),5,6)) == (1,2,3,4,5,6)
404 @test LazyTensors.flatten_tuple((1,2,(3,(4,5)),6)) == (1,2,3,4,5,6)
405 @test LazyTensors.flatten_tuple(((1,2),(3,4),(5,),6)) == (1,2,3,4,5,6)
406 end
407
408
409 @testset "LazyOuterProduct" begin
410 struct ScalingOperator{T,D} <: TensorMapping{T,D,D}
411 λ::T
412 size::NTuple{D,Int}
413 end
414
415 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...]
416 LazyTensors.range_size(m::ScalingOperator) = m.size
417 LazyTensors.domain_size(m::ScalingOperator) = m.size
418
419 A = ScalingOperator(2.0, (5,))
420 B = ScalingOperator(3.0, (3,))
421 C = ScalingOperator(5.0, (3,2))
422
423 AB = LazyOuterProduct(A,B)
424 @test AB isa TensorMapping{T,2,2} where T
425 @test range_size(AB) == (5,3)
426 @test domain_size(AB) == (5,3)
427
428 v = rand(range_size(AB)...)
429 @test AB*v == 6*v
430
431 ABC = LazyOuterProduct(A,B,C)
432
433 @test ABC isa TensorMapping{T,4,4} where T
434 @test range_size(ABC) == (5,3,3,2)
435 @test domain_size(ABC) == (5,3,3,2)
436
437 @test A⊗B == AB
438 @test A⊗B⊗C == ABC
439
440 A = rand(3,2)
441 B = rand(2,4,3)
442
443 v₁ = rand(2,4,3)
444 v₂ = rand(4,3,2)
445
446 Ã = LazyLinearMap(A,(1,),(2,))
447 B̃ = LazyLinearMap(B,(1,),(2,3))
448
449 ÃB̃ = LazyOuterProduct(Ã,B̃)
450 @tullio ABv[i,k] := A[i,j]*B[k,l,m]*v₁[j,l,m]
451 @test ÃB̃*v₁ ≈ ABv
452
453 B̃Ã = LazyOuterProduct(B̃,Ã)
454 @tullio BAv[k,i] := A[i,j]*B[k,l,m]*v₂[l,m,j]
455 @test B̃Ã*v₂ ≈ BAv
456
457 @testset "Indentity mapping arguments" begin
458 @test LazyOuterProduct(IdentityMapping(3,2), IdentityMapping(1,2)) == IdentityMapping(3,2,1,2)
459
460 Ã = LazyLinearMap(A,(1,),(2,))
461 @test LazyOuterProduct(IdentityMapping(3,2), Ã) == InflatedTensorMapping(IdentityMapping(3,2),Ã)
462 @test LazyOuterProduct(Ã, IdentityMapping(3,2)) == InflatedTensorMapping(Ã,IdentityMapping(3,2))
463
464 I1 = IdentityMapping(3,2)
465 I2 = IdentityMapping(4)
466 @test I1⊗Ã⊗I2 == InflatedTensorMapping(I1, Ã, I2)
467 end
468
469 end