1558
|
1 """
|
|
2 ParameterSpace{D}
|
|
3
|
|
4 A space of parameters of dimension `D`. Used with `Chart` to indicate which
|
|
5 parameters are valid for that chart.
|
|
6
|
|
7 Common parameter spaces are created using the functions unit sized spaces
|
|
8 * `unitinterval`
|
|
9 * `unitrectangle`
|
|
10 * `unitbox`
|
|
11 * `unittriangle`
|
|
12 * `unittetrahedron`
|
|
13 * `unithyperbox`
|
|
14 * `unitsimplex`
|
|
15
|
|
16 See also: [`Interval`](@ref), [`Rectangle`](@ref), [`Box`](@ref),
|
|
17 [`Triangle`](@ref), [`Tetrahedron`](@ref), [`HyperBox`](@ref),
|
|
18 [`Simplex`](@ref),
|
|
19 """
|
|
20 abstract type ParameterSpace{D} end
|
|
21
|
|
22 struct HyperBox{T,D} <: ParameterSpace{D}
|
|
23 a::SVector{D,T}
|
|
24 b::SVector{D,T}
|
|
25 end
|
|
26
|
|
27 function HyperBox(a,b)
|
|
28 T = SVector{length(a)}
|
|
29 HyperBox(convert(T,a), convert(T,b))
|
|
30 end
|
|
31
|
|
32 Interval{T} = HyperBox{T,1}
|
|
33 Rectangle{T} = HyperBox{T,2}
|
|
34 Box{T} = HyperBox{T,3}
|
|
35
|
|
36 limits(box::HyperBox, d) = (box.a[d], box.b[d])
|
|
37 limits(box::HyperBox) = (box.a, box.b)
|
|
38
|
|
39 unitinterval(T=Float64) = unithyperbox(T,1)
|
|
40 unitsquare(T=Float64) = unithyperbox(T,2)
|
|
41 unitcube(T=Float64) = unithyperbox(T,3)
|
|
42 unithyperbox(T, D) = HyperBox((@SVector zeros(T,D)), (@SVector ones(T,D)))
|
|
43 unithyperbox(D) = unithyperbox(Float64,D)
|
|
44
|
|
45
|
|
46 struct Simplex{T,D} <: ParameterSpace{D}
|
|
47 verticies::NTuple{D,SVector{D,T}}
|
|
48 end
|
|
49
|
|
50 Triangle{T} = Simplex{T,2}
|
|
51 Tetrahedron{T} = Simplex{T,3}
|
|
52
|
|
53 unittriangle(T) = unitsimplex(T,2)
|
|
54 unittetrahedron(T) = unitsimplex(T,3)
|
|
55 function unitsimplex(T,D)
|
|
56 z = @SVector zeros(T,D)
|
|
57 unitelement = one(eltype(z))
|
|
58 verticies = ntuple(i->setindex(z, unitelement, i), 4)
|
|
59 return Simplex(verticies)
|
|
60 end
|
|
61
|
|
62
|
|
63 """
|
|
64
|
|
65 A parametrized description of a manifold or part of a manifold.
|
|
66
|
|
67 Should implement a methods for
|
|
68 * `parameterspace`
|
|
69 * `(::Chart)(ξs...)`
|
|
70
|
|
71 There is a default implementation for `(::Chart{D})(::SVector{D})`
|
|
72 """
|
|
73 abstract type Chart{D} end
|
|
74 # abstract type Chart{D,R} end
|
|
75
|
|
76 domain_dim(::Chart{D}) where D = D
|
|
77 # range_dim(::Chart{D,R}) where {D,R} = R
|
|
78
|
|
79 """
|
|
80 The parameterspace of a chart
|
|
81 """
|
|
82 function parameterspace end
|
|
83
|
|
84 (c::Chart{D})(x̄::SVector{D}) where D = c(x̄...)
|
|
85
|
|
86
|
|
87 struct ConcereteChart{PST<:ParameterSpace, MT}
|
|
88 parameterspace::PST
|
|
89 mapping::MT
|
|
90 end
|
|
91
|
|
92 (c::Chart)(x̄) = c.mapping(x̄)
|
|
93
|
|
94
|
|
95 """
|
|
96 Atlas
|
|
97
|
|
98 A collection of charts and their connections.
|
|
99 Should implement methods for `charts` and
|
|
100 """
|
|
101 abstract type Atlas end
|
|
102
|
|
103 """
|
|
104 charts(::Atlas)
|
|
105
|
|
106 The colloction of charts in the atlas.
|
|
107 """
|
|
108 function charts end
|
|
109
|
|
110 """
|
|
111 connections
|
|
112
|
|
113 TBD: What exactly should this return?
|
|
114
|
|
115 """
|
|
116
|
|
117 struct CartesianAtlas <: Atlas
|
|
118 charts::Matrix{Chart}
|
|
119 end
|
|
120
|
|
121 charts(a::CartesianAtlas) = a.charts
|
|
122
|
|
123 struct UnstructuredAtlas <: Atlas
|
|
124 charts::Vector{Chart}
|
|
125 connections
|
|
126 end
|
|
127
|
|
128 charts(a::UnstructuredAtlas) = a.charts
|
|
129
|
|
130
|
|
131 ###
|
|
132 # Geometry
|
|
133 ###
|
|
134
|
|
135 abstract type Curve end
|
|
136 abstract type Surface end
|
|
137
|
|
138
|
|
139 struct Line{PT} <: Curve
|
|
140 p::PT
|
|
141 tangent::PT
|
|
142 end
|
|
143
|
|
144 (c::Line)(s) = c.p + s*c.tangent
|
|
145
|
|
146
|
|
147 struct LineSegment{PT} <: Curve
|
|
148 a::PT
|
|
149 b::PT
|
|
150 end
|
|
151
|
|
152 (c::LineSegment)(s) = (1-s)*c.a + s*c.b
|
|
153
|
|
154
|
|
155 struct Circle{T,PT} <: Curve
|
|
156 c::PT
|
|
157 r::T
|
|
158 end
|
|
159
|
|
160 (c::Circle)(θ) = c.c + r*@SVector[cos(Θ), sin(Θ)]
|
|
161
|
|
162 struct TransfiniteInterpolationSurface{T1,T2,T3,T4} <: Surface
|
|
163 c₁::T1
|
|
164 c₂::T2
|
|
165 c₃::T3
|
|
166 c₄::T4
|
|
167 end
|
|
168
|
|
169 function (s::TransfiniteInterpolationSurface)(u,v)
|
|
170 c₁, c₂, c₃, c₄ = s.c₁, s.c₂, s.c₃, s.c₄
|
|
171 P₀₀ = c₁(0)
|
|
172 P₁₀ = c₂(0)
|
|
173 P₁₁ = c₃(0)
|
|
174 P₀₁ = c₄(0)
|
|
175 return (1-v)*c₁(u) + u*c₂(v) + v*c₃(1-u) + (1-u)*c₄(1-v) - (
|
|
176 (1-u)*(1-v)*P₀₀ + u*(1-v)*P₁₀ + u*v*P₁₁ + (1-u)*v*P₀₁
|
|
177 )
|
|
178 end
|
|
179
|
|
180 function (s::TransfiniteInterpolationSurface)(ξ̄::AbstractArray)
|
|
181 s(ξ̄...)
|
|
182 end
|
|
183
|
|
184
|
|
185 function polygon_sides(Ps...)
|
|
186 n = length(Ps)
|
|
187 return [t->line(t,Ps[i],Ps[mod1(i+1,n)]) for i ∈ eachindex(Ps)]
|
|
188 end
|