changeset 746:e95a0f2f7a8d feature/grids

Add file that was forgotten.
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 28 Mar 2018 12:51:05 +0200
parents 00eb5db89da5
children c3e89f9b2af7
files +time/SBPInTimeScaled.m
diffstat 1 files changed, 139 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/SBPInTimeScaled.m	Wed Mar 28 12:51:05 2018 +0200
@@ -0,0 +1,139 @@
+classdef SBPInTimeScaled < time.Timestepper
+    % The SBP in time method.
+    % Implemented for A*v_t = B*v + f(t), v(0) = v0
+    % The resulting system of equations is
+    %   M*u_next= K*u_prev_end + f
+    properties
+        A,B
+        f
+
+        k % total time step.
+
+        blockSize % number of points in each block
+        N % Number of components
+
+        order
+        nodes
+
+        Mtilde,Ktilde     % System matrices
+        L,U,p,q % LU factorization of M
+        e_T
+
+        scaling
+        S, Sinv % Scaling matrices
+
+        % Time state
+        t
+        vtilde
+        n
+    end
+
+    methods
+        function obj = SBPInTimeScaled(A, B, f, k, t0, v0, scaling, TYPE, order, blockSize)
+            default_arg('TYPE','gauss');
+            default_arg('f',[]);
+
+            if(strcmp(TYPE,'gauss'))
+                default_arg('order',4)
+                default_arg('blockSize',4)
+            else
+                default_arg('order', 8);
+                default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE));
+            end
+
+            obj.A = A;
+            obj.B = B;
+            obj.scaling = scaling;
+
+            if ~isempty(f)
+                obj.f = f;
+            else
+                obj.f = @(t)sparse(length(v0),1);
+            end
+
+            obj.k = k;
+            obj.blockSize = blockSize;
+            obj.N = length(v0);
+
+            obj.n = 0;
+            obj.t = t0;
+
+            %==== Build the time discretization matrix =====%
+            switch TYPE
+                case 'equidistant'
+                    ops = sbp.D2Standard(blockSize,{0,obj.k},order);
+                case 'optimal'
+                    ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order);
+                case 'minimal'
+                    ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal');
+                case 'gauss'
+                    ops = sbp.D1Gauss(blockSize,{0,obj.k});
+            end
+
+            I = speye(size(A));
+            I_t = speye(blockSize,blockSize);
+
+            D1 = kron(ops.D1, I);
+            HI = kron(ops.HI, I);
+            e_0 = kron(ops.e_l, I);
+            e_T = kron(ops.e_r, I);
+            obj.nodes = ops.x;
+
+            % Convert to form M*w = K*v0 + f(t)
+            tau = kron(I_t, A) * e_0;
+            M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B);
+
+            K = HI*tau;
+
+            obj.S =    kron(I_t, spdiag(scaling));
+            obj.Sinv = kron(I_t, spdiag(1./scaling));
+
+            obj.Mtilde = obj.Sinv*M*obj.S;
+            obj.Ktilde = obj.Sinv*K*spdiag(scaling);
+            obj.e_T = e_T;
+
+
+            % LU factorization
+            [obj.L,obj.U,obj.p,obj.q] = lu(obj.Mtilde, 'vector');
+
+            obj.vtilde = (1./obj.scaling).*v0;
+        end
+
+        function [v,t] = getV(obj)
+            v = obj.scaling.*obj.vtilde;
+            t = obj.t;
+        end
+
+        function obj = step(obj)
+            forcing = zeros(obj.blockSize*obj.N,1);
+
+            for i = 1:obj.blockSize
+                forcing((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i));
+            end
+
+            RHS = obj.Sinv*forcing + obj.Ktilde*obj.vtilde;
+
+            y = obj.L\RHS(obj.p);
+            z = obj.U\y;
+
+            w = zeros(size(z));
+            w(obj.q) = z;
+
+            obj.vtilde = obj.e_T'*w;
+
+            obj.t = obj.t + obj.k;
+            obj.n = obj.n + 1;
+        end
+    end
+
+    methods(Static)
+        function N = smallestBlockSize(order,TYPE)
+            default_arg('TYPE','gauss')
+
+            switch TYPE
+                case 'gauss'
+                    N = 4;
+            end
+        end
+    end
+end