changeset 1170:d3bde8a23e08 feature/rv

Fix incorrect filename
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 28 Jun 2019 13:14:59 +0200
parents d02e5b8a0b24
children 393ed30866a1
files +rv/+time/RungekuttaExteriorRvMultiStage.m +rv/+time/RungekuttaRvMultiStage.m
diffstat 2 files changed, 65 insertions(+), 65 deletions(-) [+]
line wrap: on
line diff
--- a/+rv/+time/RungekuttaExteriorRvMultiStage.m	Fri Jun 28 13:13:17 2019 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,65 +0,0 @@
-classdef RungekuttaRvMultiStage < time.Timestepper
-    properties
-        F           % RHS of the ODE
-        F_unstable  % RHS of the unstabalized ODE
-        k       % Time step
-        t       % Time point
-        v       % Solution vector
-        n       % Time level
-        rkScheme  % The particular RK scheme used for time integration
-        RV              % Residual Viscosity operator
-        DvDt            % Function for computing the time deriative used for the RV evaluation
-        v_unstable
-        viscosity
-    end
-    methods
-
-        function obj = RungekuttaRvMultiStage(F, F_unstable, k, t0, v0, RV, DvDt, order)
-            obj.F = F;
-            obj.F_unstable = F_unstable;
-            obj.k = k;
-            obj.t = t0;
-            obj.v = v0;
-            obj.n = 0;
-            
-            if (order == 4) % Use specialized RK4 scheme
-                obj.rkScheme = @time.rk.rungekutta_4;
-            else
-                % Extract the coefficients for the specified order
-                % used for the RK updates from the Butcher tableua.
-                [s,a,b,c] = time.rk.butcherTableau(order);
-                coeffs = struct('s',s,'a',a,'b',b,'c',c);
-                obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs);
-            end
-        
-            obj.RV = RV;
-            obj.DvDt = DvDt;
-            obj.v_unstable = 0*v0;
-            obj.viscosity = 0*v0;
-        end
-
-        function [v, t] = getV(obj)
-            v = obj.v;
-            t = obj.t;
-        end
-
-        function state = getState(obj)
-            dvdt = obj.DvDt(obj.v_unstable);
-            [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt);
-            state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', obj.viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t);
-        end
-
-        % Advances the solution vector one time step using the Runge-Kutta method given by
-        % obj.coeffs, using a fixed residual viscosity for the Runge-Kutta substeps
-        function obj = step(obj)            
-            m = length(obj.viscosity);
-            obj.v_unstable = obj.rkScheme(obj.v, obj.t, obj.k, obj.F_unstable);
-            obj.viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt(obj.v_unstable));
-            % Fix the viscosity of the stabilized RHS
-            F_stable = @(v,t) obj.F(v,t,spdiags(obj.viscosity,0,m,m));
-            obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_stable);
-            obj.t = obj.t + obj.k;
-            obj.n = obj.n + 1;
-        end
-    end
-end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+rv/+time/RungekuttaRvMultiStage.m	Fri Jun 28 13:14:59 2019 +0200
@@ -0,0 +1,65 @@
+classdef RungekuttaRvMultiStage < time.Timestepper
+    properties
+        F           % RHS of the ODE
+        F_unstable  % RHS of the unstabalized ODE
+        k       % Time step
+        t       % Time point
+        v       % Solution vector
+        n       % Time level
+        rkScheme  % The particular RK scheme used for time integration
+        RV              % Residual Viscosity operator
+        DvDt            % Function for computing the time deriative used for the RV evaluation
+        v_unstable
+        viscosity
+    end
+    methods
+
+        function obj = RungekuttaRvMultiStage(F, F_unstable, k, t0, v0, RV, DvDt, order)
+            obj.F = F;
+            obj.F_unstable = F_unstable;
+            obj.k = k;
+            obj.t = t0;
+            obj.v = v0;
+            obj.n = 0;
+            
+            if (order == 4) % Use specialized RK4 scheme
+                obj.rkScheme = @time.rk.rungekutta_4;
+            else
+                % Extract the coefficients for the specified order
+                % used for the RK updates from the Butcher tableua.
+                [s,a,b,c] = time.rk.butcherTableau(order);
+                coeffs = struct('s',s,'a',a,'b',b,'c',c);
+                obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs);
+            end
+        
+            obj.RV = RV;
+            obj.DvDt = DvDt;
+            obj.v_unstable = 0*v0;
+            obj.viscosity = 0*v0;
+        end
+
+        function [v, t] = getV(obj)
+            v = obj.v;
+            t = obj.t;
+        end
+
+        function state = getState(obj)
+            dvdt = obj.DvDt(obj.v_unstable);
+            [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt);
+            state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', obj.viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t);
+        end
+
+        % Advances the solution vector one time step using the Runge-Kutta method given by
+        % obj.coeffs, using a fixed residual viscosity for the Runge-Kutta substeps
+        function obj = step(obj)            
+            m = length(obj.viscosity);
+            obj.v_unstable = obj.rkScheme(obj.v, obj.t, obj.k, obj.F_unstable);
+            obj.viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt(obj.v_unstable));
+            % Fix the viscosity of the stabilized RHS
+            F_stable = @(v,t) obj.F(v,t,spdiags(obj.viscosity,0,m,m));
+            obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_stable);
+            obj.t = obj.t + obj.k;
+            obj.n = obj.n + 1;
+        end
+    end
+end
\ No newline at end of file