changeset 1169:d02e5b8a0b24 feature/rv

Rename RungekuttaRV time steppers. Add RungekuttaRVMultiStage time stepper
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 28 Jun 2019 13:13:17 +0200
parents af3c4eb0cbbd
children d3bde8a23e08
files +rv/+time/RungeKuttaRvInstage.m +rv/+time/RungekuttaExteriorRv.m +rv/+time/RungekuttaExteriorRvBdf.m +rv/+time/RungekuttaExteriorRvMg.m +rv/+time/RungekuttaExteriorRvMultiStage.m +rv/+time/RungekuttaInteriorRv.m +rv/+time/RungekuttaRvBdf.m +rv/+time/RungekuttaRvMultiGrid.m
diffstat 8 files changed, 270 insertions(+), 263 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+rv/+time/RungeKuttaRvInstage.m	Fri Jun 28 13:13:17 2019 +0200
@@ -0,0 +1,47 @@
+classdef RungekuttaRvInstage < time.Timestepper
+    properties
+        F       % RHS of the ODE
+        k       % Time step
+        t       % Time point
+        v       % Solution vector
+        n       % Time level
+        coeffs  % The coefficents used for the RK time integration
+        RV      % Residual Viscosity
+        DvDt    % Function for computing the time deriative used for the RV evaluation
+    end
+
+    methods
+        function obj = RungekuttaRvInstage(F, k, t0, v0, RV, DvDt, order)
+            obj.F = F;
+            obj.k = k;
+            obj.t = t0;
+            obj.v = v0;
+            obj.n = 0;
+            % Extract the coefficients for the specified order
+            % used for the RK updates from the Butcher tableua.
+            [s,a,b,c] = time.rk.butcherTableau(order);
+            obj.coeffs = struct('s',s,'a',a,'b',b,'c',c);
+            obj.RV = RV;
+            obj.DvDt = DvDt;
+        end
+
+        function [v, t] = getV(obj)
+            v = obj.v;
+            t = obj.t;
+        end
+
+        function state = getState(obj)
+            dvdt = obj.DvDt(obj.v);
+            [viscosity,  Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt);
+            state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t);
+        end
+
+        % Advances the solution vector one time step using the Runge-Kutta method given by
+        % obj.coeffs, updating the Residual Viscosity in each Runge-Kutta stage
+        function obj = step(obj)
+            obj.v = rv.time.rungekuttaRV(obj.v, obj.t, obj.k, obj.F, obj.RV, obj.DvDt, obj.coeffs);
+            obj.t = obj.t + obj.k;
+            obj.n = obj.n + 1;
+        end
+    end
+end
\ No newline at end of file
--- a/+rv/+time/RungekuttaExteriorRv.m	Fri Jun 28 13:12:29 2019 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,58 +0,0 @@
-classdef RungekuttaExteriorRv < time.Timestepper
-    properties
-        F       % RHS of the ODE
-        k       % Time step
-        t       % Time point
-        v       % Solution vector
-        n       % Time level
-        rkScheme  % The particular RK scheme used for time integration
-        RV              % Residual Viscosity operator
-        DvDt            % Function for computing the time deriative used for the RV evaluation
-    end
-    methods
-
-        function obj = RungekuttaExteriorRv(F, k, t0, v0, RV, DvDt, order)
-            obj.F = F;
-            obj.k = k;
-            obj.t = t0;
-            obj.v = v0;
-            obj.n = 0;
-            
-            if (order == 4) % Use specialized RK4 scheme
-                obj.rkScheme = @time.rk.rungekutta_4;
-            else
-                % Extract the coefficients for the specified order
-                % used for the RK updates from the Butcher tableua.
-                [s,a,b,c] = time.rk.butcherTableau(order);
-                coeffs = struct('s',s,'a',a,'b',b,'c',c);
-                obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs);
-            end
-        
-            obj.RV = RV;
-            obj.DvDt = DvDt;
-        end
-
-        function [v, t] = getV(obj)
-            v = obj.v;
-            t = obj.t;
-        end
-
-        function state = getState(obj)
-            dvdt = obj.DvDt(obj.v);
-            [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt);
-            state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t);
-        end
-
-        % Advances the solution vector one time step using the Runge-Kutta method given by
-        % obj.coeffs, using a fixed residual viscosity for the Runge-Kutta substeps
-        function obj = step(obj)            
-            % Fix the viscosity of the RHS function F
-            viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt(obj.v));
-            m = length(viscosity);
-            F_visc = @(v,t) obj.F(v,t,spdiags(viscosity,0,m,m));
-            obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_visc);
-            obj.t = obj.t + obj.k;
-            obj.n = obj.n + 1;
-        end
-    end
-end
\ No newline at end of file
--- a/+rv/+time/RungekuttaExteriorRvBdf.m	Fri Jun 28 13:12:29 2019 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,93 +0,0 @@
-classdef RungekuttaExteriorRvBdf < time.Timestepper
-    properties
-        F       % RHS of the ODE
-        k       % Time step
-        t       % Time point
-        v       % Solution vector
-        n       % Time level
-        rkScheme  % The particular RK scheme used for time integration
-
-        
-        % Properties related to the residual viscositys
-        RV              % Residual Viscosity operator
-        v_prev          % Solution vector at previous time levels, used for the RV evaluation
-        DvDt            % Function for computing the time deriative used for the RV evaluation
-        lowerBdfOrder   % Orders of the approximation of the time deriative, used for the RV evaluation.
-                        % dictates which accuracy the boot-strapping should start from.
-        upperBdfOrder   % Orders of the approximation of the time deriative, used for the RV evaluation.
-                        % Dictates the order of accuracy used once the boot-strapping is complete.
-
-
-    end
-    methods
-        function obj = RungekuttaExteriorRvBdf(F, k, t0, v0, RV, rkOrder, bdfOrders)
-            obj.F = F;
-            obj.k = k;
-            obj.t = t0;
-            obj.v = v0;
-            obj.n = 0;
-            obj.RV = RV;
-            obj.lowerBdfOrder = bdfOrders.lowerBdfOrder;
-            obj.upperBdfOrder = bdfOrders.upperBdfOrder;
-            assert((obj.lowerBdfOrder >= 1) && (obj.upperBdfOrder <= 6));
-            obj.v_prev = [];
-            obj.DvDt = rv.time.BdfDerivative();
-
-            if (rkOrder == 4) % Use specialized RK4 scheme
-                obj.rkScheme = @time.rk.rungekutta_4;
-            else
-                % Extract the coefficients for the specified order
-                % used for the RK updates from the Butcher tableua.
-                [s,a,b,c] = time.rk.butcherTableau(rkOrder);
-                coeffs = struct('s',s,'a',a,'b',b,'c',c);
-                obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs);
-            end
-
-        end
-
-        function [v, t] = getV(obj)
-            v = obj.v;
-            t = obj.t;
-        end
-
-        function state = getState(obj)
-            if (size(obj.v_prev,2) >=  obj.lowerBdfOrder)
-                dvdt = obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k);
-                [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt);
-            else
-                viscosity = zeros(size(obj.v));
-                dvdt = zeros(size(obj.v));
-                Df = zeros(size(obj.v));
-                firstOrderViscosity = zeros(size(obj.v));
-                residualViscosity = zeros(size(obj.v));
-            end
-            state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t);
-        end
-
-        function obj = step(obj)
-            nStoredStages = size(obj.v_prev,2);
-
-            %Calculate viscosity for the new time level
-            if (nStoredStages >=  obj.lowerBdfOrder)
-                viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k));
-            else
-                viscosity = zeros(size(obj.v));
-            end
-
-             % Store current time level and update v_prev
-            if (nStoredStages < obj.upperBdfOrder)
-                obj.v_prev = [obj.v, obj.v_prev];
-            else
-                obj.v_prev(:,2:end) = obj.v_prev(:,1:end-1);
-                obj.v_prev(:,1) = obj.v;
-            end
-
-            % Fix the viscosity of the RHS function F
-            m = length(viscosity);
-            F_visc = @(v,t) obj.F(v, t, spdiags(viscosity,0,m,m));
-            obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_visc);
-            obj.t = obj.t + obj.k;
-            obj.n = obj.n + 1;
-        end
-    end
-end
\ No newline at end of file
--- a/+rv/+time/RungekuttaExteriorRvMg.m	Fri Jun 28 13:12:29 2019 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,65 +0,0 @@
-classdef RungekuttaExteriorRvMg < time.Timestepper
-    properties
-        F           % RHS of the ODE
-        F_unstable  % RHS of the unstabalized ODE
-        k       % Time step
-        t       % Time point
-        v       % Solution vector
-        n       % Time level
-        rkScheme  % The particular RK scheme used for time integration
-        RV              % Residual Viscosity operator
-        DvDt            % Function for computing the time deriative used for the RV evaluation
-        v_unstable
-        viscosity
-    end
-    methods
-
-        function obj = RungekuttaExteriorRvMg(F, F_unstable, k, t0, v0, RV, DvDt, order)
-            obj.F = F;
-            obj.F_unstable = F_unstable;
-            obj.k = k;
-            obj.t = t0;
-            obj.v = v0;
-            obj.n = 0;
-            
-            if (order == 4) % Use specialized RK4 scheme
-                obj.rkScheme = @time.rk.rungekutta_4;
-            else
-                % Extract the coefficients for the specified order
-                % used for the RK updates from the Butcher tableua.
-                [s,a,b,c] = time.rk.butcherTableau(order);
-                coeffs = struct('s',s,'a',a,'b',b,'c',c);
-                obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs);
-            end
-        
-            obj.RV = RV;
-            obj.DvDt = DvDt;
-            obj.v_unstable = 0*v0;
-            obj.viscosity = 0*v0;
-        end
-
-        function [v, t] = getV(obj)
-            v = obj.v;
-            t = obj.t;
-        end
-
-        function state = getState(obj)
-            dvdt = obj.DvDt(obj.v_unstable);
-            [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt);
-            state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', obj.viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t);
-        end
-
-        % Advances the solution vector one time step using the Runge-Kutta method given by
-        % obj.coeffs, using a fixed residual viscosity for the Runge-Kutta substeps
-        function obj = step(obj)            
-            m = length(obj.viscosity);
-            obj.v_unstable = obj.rkScheme(obj.v, obj.t, obj.k, obj.F_unstable);
-            obj.viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt(obj.v_unstable));
-            % Fix the viscosity of the stabilized RHS
-            F_stable = @(v,t) obj.F(v,t,spdiags(obj.viscosity,0,m,m));
-            obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_stable);
-            obj.t = obj.t + obj.k;
-            obj.n = obj.n + 1;
-        end
-    end
-end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+rv/+time/RungekuttaExteriorRvMultiStage.m	Fri Jun 28 13:13:17 2019 +0200
@@ -0,0 +1,65 @@
+classdef RungekuttaRvMultiStage < time.Timestepper
+    properties
+        F           % RHS of the ODE
+        F_unstable  % RHS of the unstabalized ODE
+        k       % Time step
+        t       % Time point
+        v       % Solution vector
+        n       % Time level
+        rkScheme  % The particular RK scheme used for time integration
+        RV              % Residual Viscosity operator
+        DvDt            % Function for computing the time deriative used for the RV evaluation
+        v_unstable
+        viscosity
+    end
+    methods
+
+        function obj = RungekuttaRvMultiStage(F, F_unstable, k, t0, v0, RV, DvDt, order)
+            obj.F = F;
+            obj.F_unstable = F_unstable;
+            obj.k = k;
+            obj.t = t0;
+            obj.v = v0;
+            obj.n = 0;
+            
+            if (order == 4) % Use specialized RK4 scheme
+                obj.rkScheme = @time.rk.rungekutta_4;
+            else
+                % Extract the coefficients for the specified order
+                % used for the RK updates from the Butcher tableua.
+                [s,a,b,c] = time.rk.butcherTableau(order);
+                coeffs = struct('s',s,'a',a,'b',b,'c',c);
+                obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs);
+            end
+        
+            obj.RV = RV;
+            obj.DvDt = DvDt;
+            obj.v_unstable = 0*v0;
+            obj.viscosity = 0*v0;
+        end
+
+        function [v, t] = getV(obj)
+            v = obj.v;
+            t = obj.t;
+        end
+
+        function state = getState(obj)
+            dvdt = obj.DvDt(obj.v_unstable);
+            [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt);
+            state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', obj.viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t);
+        end
+
+        % Advances the solution vector one time step using the Runge-Kutta method given by
+        % obj.coeffs, using a fixed residual viscosity for the Runge-Kutta substeps
+        function obj = step(obj)            
+            m = length(obj.viscosity);
+            obj.v_unstable = obj.rkScheme(obj.v, obj.t, obj.k, obj.F_unstable);
+            obj.viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt(obj.v_unstable));
+            % Fix the viscosity of the stabilized RHS
+            F_stable = @(v,t) obj.F(v,t,spdiags(obj.viscosity,0,m,m));
+            obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_stable);
+            obj.t = obj.t + obj.k;
+            obj.n = obj.n + 1;
+        end
+    end
+end
\ No newline at end of file
--- a/+rv/+time/RungekuttaInteriorRv.m	Fri Jun 28 13:12:29 2019 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,47 +0,0 @@
-classdef RungekuttaInteriorRv < time.Timestepper
-    properties
-        F       % RHS of the ODE
-        k       % Time step
-        t       % Time point
-        v       % Solution vector
-        n       % Time level
-        coeffs  % The coefficents used for the RK time integration
-        RV      % Residual Viscosity
-        DvDt    % Function for computing the time deriative used for the RV evaluation
-    end
-
-    methods
-        function obj = RungekuttaInteriorRv(F, k, t0, v0, RV, DvDt, order)
-            obj.F = F;
-            obj.k = k;
-            obj.t = t0;
-            obj.v = v0;
-            obj.n = 0;
-            % Extract the coefficients for the specified order
-            % used for the RK updates from the Butcher tableua.
-            [s,a,b,c] = time.rk.butcherTableau(order);
-            obj.coeffs = struct('s',s,'a',a,'b',b,'c',c);
-            obj.RV = RV;
-            obj.DvDt = DvDt;
-        end
-
-        function [v, t] = getV(obj)
-            v = obj.v;
-            t = obj.t;
-        end
-
-        function state = getState(obj)
-            dvdt = obj.DvDt(obj.v);
-            [viscosity,  Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt);
-            state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t);
-        end
-
-        % Advances the solution vector one time step using the Runge-Kutta method given by
-        % obj.coeffs, updating the Residual Viscosity in each Runge-Kutta stage
-        function obj = step(obj)
-            obj.v = rv.time.rungekuttaRV(obj.v, obj.t, obj.k, obj.F, obj.RV, obj.DvDt, obj.coeffs);
-            obj.t = obj.t + obj.k;
-            obj.n = obj.n + 1;
-        end
-    end
-end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+rv/+time/RungekuttaRvBdf.m	Fri Jun 28 13:13:17 2019 +0200
@@ -0,0 +1,93 @@
+classdef RungekuttaRvBdf < time.Timestepper
+    properties
+        F       % RHS of the ODE
+        k       % Time step
+        t       % Time point
+        v       % Solution vector
+        n       % Time level
+        rkScheme  % The particular RK scheme used for time integration
+
+        
+        % Properties related to the residual viscositys
+        RV              % Residual Viscosity operator
+        v_prev          % Solution vector at previous time levels, used for the RV evaluation
+        DvDt            % Function for computing the time deriative used for the RV evaluation
+        lowerBdfOrder   % Orders of the approximation of the time deriative, used for the RV evaluation.
+                        % dictates which accuracy the boot-strapping should start from.
+        upperBdfOrder   % Orders of the approximation of the time deriative, used for the RV evaluation.
+                        % Dictates the order of accuracy used once the boot-strapping is complete.
+
+
+    end
+    methods
+        function obj = RungekuttaRvBdf(F, k, t0, v0, RV, rkOrder, bdfOrders)
+            obj.F = F;
+            obj.k = k;
+            obj.t = t0;
+            obj.v = v0;
+            obj.n = 0;
+            obj.RV = RV;
+            obj.lowerBdfOrder = bdfOrders.lowerBdfOrder;
+            obj.upperBdfOrder = bdfOrders.upperBdfOrder;
+            assert((obj.lowerBdfOrder >= 1) && (obj.upperBdfOrder <= 6));
+            obj.v_prev = [];
+            obj.DvDt = rv.time.BdfDerivative();
+
+            if (rkOrder == 4) % Use specialized RK4 scheme
+                obj.rkScheme = @time.rk.rungekutta_4;
+            else
+                % Extract the coefficients for the specified order
+                % used for the RK updates from the Butcher tableua.
+                [s,a,b,c] = time.rk.butcherTableau(rkOrder);
+                coeffs = struct('s',s,'a',a,'b',b,'c',c);
+                obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs);
+            end
+
+        end
+
+        function [v, t] = getV(obj)
+            v = obj.v;
+            t = obj.t;
+        end
+
+        function state = getState(obj)
+            if (size(obj.v_prev,2) >=  obj.lowerBdfOrder)
+                dvdt = obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k);
+                [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt);
+            else
+                viscosity = zeros(size(obj.v));
+                dvdt = zeros(size(obj.v));
+                Df = zeros(size(obj.v));
+                firstOrderViscosity = zeros(size(obj.v));
+                residualViscosity = zeros(size(obj.v));
+            end
+            state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t);
+        end
+
+        function obj = step(obj)
+            nStoredStages = size(obj.v_prev,2);
+
+            %Calculate viscosity for the new time level
+            if (nStoredStages >=  obj.lowerBdfOrder)
+                viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k));
+            else
+                viscosity = zeros(size(obj.v));
+            end
+
+             % Store current time level and update v_prev
+            if (nStoredStages < obj.upperBdfOrder)
+                obj.v_prev = [obj.v, obj.v_prev];
+            else
+                obj.v_prev(:,2:end) = obj.v_prev(:,1:end-1);
+                obj.v_prev(:,1) = obj.v;
+            end
+
+            % Fix the viscosity of the RHS function F
+            m = length(viscosity);
+            F_visc = @(v,t) obj.F(v, t, spdiags(viscosity,0,m,m));
+            obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_visc);
+            obj.t = obj.t + obj.k;
+            obj.n = obj.n + 1;
+        end
+    end
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+rv/+time/RungekuttaRvMultiGrid.m	Fri Jun 28 13:13:17 2019 +0200
@@ -0,0 +1,65 @@
+classdef RungekuttaRvMultiGrid < time.Timestepper
+    properties
+        F           % RHS of the ODE
+        F_coarse  % RHS of the unstabalized ODE
+        k       % Time step
+        t       % Time point
+        v       % Solution vector
+        n       % Time level
+        rkScheme  % The particular RK scheme used for time integration
+        RV              % Residual Viscosity operator
+        DvDt            % Function for computing the time deriative used for the RV evaluation
+        v_unstable
+        viscosity
+    end
+    methods
+
+        function obj = RungekuttaRvMultiGrid(F, F_coarse, k, t0, v0, RV, DvDt, order)
+            obj.F = F;
+            obj.F_coarse = F_coarse;
+            obj.k = k;
+            obj.t = t0;
+            obj.v = v0;
+            obj.n = 0;
+            
+            if (order == 4) % Use specialized RK4 scheme
+                obj.rkScheme = @time.rk.rungekutta_4;
+            else
+                % Extract the coefficients for the specified order
+                % used for the RK updates from the Butcher tableua.
+                [s,a,b,c] = time.rk.butcherTableau(order);
+                coeffs = struct('s',s,'a',a,'b',b,'c',c);
+                obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs);
+            end
+        
+            obj.RV = RV;
+            obj.DvDt = DvDt;
+            obj.v_unstable = 0*v0;
+            obj.viscosity = 0*v0;
+        end
+
+        function [v, t] = getV(obj)
+            v = obj.v;
+            t = obj.t;
+        end
+
+        function state = getState(obj)
+            dvdt = obj.DvDt(obj.v_unstable);
+            [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt);
+            state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', obj.viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t);
+        end
+
+        % Advances the solution vector one time step using the Runge-Kutta method given by
+        % obj.coeffs, using a fixed residual viscosity for the Runge-Kutta substeps
+        function obj = step(obj)            
+            m = length(obj.viscosity);
+            obj.v_unstable = obj.rkScheme(obj.v, obj.t, obj.k, obj.F_coarse);
+            obj.viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt(obj.v_unstable));
+            % Fix the viscosity of the stabilized RHS
+            F_stable = @(v,t) obj.F(v,t,spdiags(obj.viscosity,0,m,m));
+            obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_stable);
+            obj.t = obj.t + obj.k;
+            obj.n = obj.n + 1;
+        end
+    end
+end
\ No newline at end of file