changeset 349:cd6a29ab3746 feature/hypsyst

A 3D is added and an attempt to imlement 3D transfinit interpolation has been initialized
author Ylva Rydin <ylva.rydin@telia.com>
date Thu, 13 Oct 2016 09:34:30 +0200
parents d9860ebc3148
children 5d5652fe826a
files +grid/Ti3D.m +scheme/Hypsyst3d.m
diffstat 2 files changed, 570 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+grid/Ti3D.m	Thu Oct 13 09:34:30 2016 +0200
@@ -0,0 +1,252 @@
+classdef Ti3D
+    properties
+        gs % {6}Surfaces
+        V  % FunctionHandle(XI,ETA,ZETA)
+    end
+    
+    methods
+        % TODO function to label boundary names.
+        %  function to find largest and smallest delta h in the grid. Maybe shouldnt live here
+        function obj = Ti3D(CW,CE,CS,CN,CB,CT)
+            obj.gs = {CE,CW,CS,CN,CB,CT};
+            
+            gw = CW.g;
+            ge = CE.g;
+            gs = CS.g;
+            gn = CN.g;
+            gb = CB.g;
+            gt = CT.g;
+            
+            function o = V_fun(XI,ETA,ZETA)
+                XI=XI';
+                ETA=ETA';
+                ZETA=ZETA';
+                
+                one=0*ETA+1;
+                zero=0*ETA;
+                
+                Sw = gw((1-ETA),(1-ZETA));
+                Se = ge(ETA,ZETA);
+                Ss = gs(XI,(1-ZETA));
+                Sn = gn((1-XI),ZETA);
+                Sb = gb(XI,ETA);
+                St = gt((1-XI),(1-ETA));
+                
+                Ewt = gw(1-ETA,zero);
+                Ewb = gw(1-ETA,one);
+                Ews = gw(one,1-ZETA);
+                Ewn = gw(zero,1-ZETA);
+                Eet = ge(ETA,one);
+                Eeb = ge(ETA,zero);
+                Ees = ge(0*one,ZETA);
+                Een = ge(one,ZETA);
+                Enb = gn(1-XI,zero);
+                Ent = gn(1-XI,one);
+                Est = gs(XI,zero);
+                Esb = gs(XI,one);
+                
+                Cwbs = gw(one,one);
+                Cwbn = gw(zero,one);
+                Cwts = gw(one,zero);
+                Cwtn = gw(zero,zero);
+                Cebs = ge(zero,zero);
+                Cebn = ge(one,zero);
+                Cets = ge(zero,one);
+                Cetn = ge(one,one);
+                
+                
+                X1 = (1-XI).*Sw(1,:,:) + XI.*Se(1,:,:);
+                X2 = (1-ETA).*Ss(1,:,:) + ETA.*Sn(1,:,:);
+                X3 = (1-ZETA).*Sb(1,:,:) + ZETA.*St(1,:,:);
+                
+                X12 = (1-XI).*(1-ETA).*Ews(1,:,:) + (1-XI).*ETA.*Ewn(1,:,:) + XI.*(1-ETA).*Ees(1,:,:) + XI.*ETA.*Een(1,:,:);
+                X13 = (1-XI).*(1-ZETA).*Ewb(1,:,:) + (1-XI).*ZETA.*Ewt(1,:,:) + XI.*(1-ZETA).*Eeb(1,:,:) + XI.*ZETA.*Eet(1,:,:);
+                X23 = (1-ETA).*(1-ZETA).*Esb(1,:,:) + (1-ETA).*ZETA.*Est(1,:,:) + ETA.*(1-ZETA).*Enb(1,:,:) + ETA.*ZETA.*Ent(1,:,:);
+                
+                X123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(1,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(1,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(1,:,:) + ...
+                    (1-XI).*ETA.*ZETA.*Cwtn(1,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(1,:,:) + XI.*(1-ETA).*ZETA.*Cets(1,:,:) + ...
+                    XI.*ETA.*(1-ZETA).*Cebn(1,:,:) + XI.*ETA.*ZETA.*Cetn(1,:,:);
+                
+                X = X1 + X2 + X3 - X12 - X13 - X23 + X123;
+                
+                
+                Y1 = (1-XI).*Sw(2,:,:) + XI.*Se(2,:,:);
+                Y2 = (1-ETA).*Ss(2,:,:) + ETA.*Sn(2,:,:);
+                Y3 = (1-ZETA).*Sb(2,:,:) + ZETA.*St(2,:,:);
+                
+                Y12 = (1-XI).*(1-ETA).*Ews(2,:,:) + (1-XI).*ETA.*Ewn(2,:,:) + XI.*(1-ETA).*Ees(2,:,:) + XI.*ETA.*Een(2,:,:);
+                Y13 = (1-XI).*(1-ZETA).*Ewb(2,:,:) + (1-XI).*ZETA.*Ewt(2,:,:) + XI.*(1-ZETA).*Eeb(2,:,:) + XI.*ZETA.*Eet(2,:,:);
+                Y23 = (1-ETA).*(1-ZETA).*Esb(2,:,:) + (1-ETA).*ZETA.*Est(2,:,:) + ETA.*(1-ZETA).*Enb(2,:,:) + ETA.*ZETA.*Ent(2,:,:);
+                
+                Y123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(2,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(2,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(2,:,:) + ...
+                    (1-XI).*ETA.*ZETA.*Cwtn(2,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(2,:,:) + XI.*(1-ETA).*ZETA.*Cets(2,:,:) + ...
+                    XI.*ETA.*(1-ZETA).*Cebn(2,:,:) + XI.*ETA.*ZETA.*Cetn(2,:,:);
+                
+                Y = Y1 + Y2 + Y3 - Y12 - Y13 - Y23 + Y123;
+                
+                
+                Z1 = (1-XI).*Sw(3,:,:) + XI.*Se(3,:,:);
+                Z2 = (1-ETA).*Ss(3,:,:) + ETA.*Sn(3,:,:);
+                Z3 = (1-ZETA).*Sb(3,:,:) + ZETA.*St(3,:,:);
+                
+                Z12 = (1-XI).*(1-ETA).*Ews(3,:,:) + (1-XI).*ETA.*Ewn(3,:,:) + XI.*(1-ETA).*Ees(3,:,:) + XI.*ETA.*Een(3,:,:);
+                Z13 = (1-XI).*(1-ZETA).*Ewb(3,:,:) + (1-XI).*ZETA.*Ewt(3,:,:) + XI.*(1-ZETA).*Eeb(3,:,:) + XI.*ZETA.*Eet(3,:,:);
+                Z23 = (1-ETA).*(1-ZETA).*Esb(3,:,:) + (1-ETA).*ZETA.*Est(3,:,:) + ETA.*(1-ZETA).*Enb(3,:,:) + ETA.*ZETA.*Ent(3,:,:);
+                
+                Z123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(3,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(3,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(3,:,:) + ...
+                    (1-XI).*ETA.*ZETA.*Cwtn(3,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(3,:,:) + XI.*(1-ETA).*ZETA.*Cets(3,:,:) + ...
+                    XI.*ETA.*(1-ZETA).*Cebn(3,:,:) + XI.*ETA.*ZETA.*Cetn(3,:,:);
+                
+                Z = Z1 + Z2 + Z3 - Z12 - Z13 - Z23 + Z123;
+                o = [X;Y;Z];
+            end
+            
+            obj.V = @V_fun;
+        end
+        
+        
+        function [X,Y,Z] = map(obj,XI,ETA,ZETA)
+            
+            V = obj.V;
+            
+            p = V(XI,ETA,ZETA);
+            X = p(1,:)';
+            Y = p(2,:)';
+            Z = p(3,:)';
+            
+        end
+        
+        %         function h = plot(obj,nu,nv)
+        %             S = obj.S;
+        %
+        %             default_arg('nv',nu)
+        %
+        %             u = linspace(0,1,nu);
+        %             v = linspace(0,1,nv);
+        %
+        %             m = 100;
+        %
+        %             X = zeros(nu+nv,m);
+        %             Y = zeros(nu+nv,m);
+        %
+        %
+        %             t = linspace(0,1,m);
+        %             for i = 1:nu
+        %                 p = S(u(i),t);
+        %                 X(i,:) = p(1,:);
+        %                 Y(i,:) = p(2,:);
+        %             end
+        %
+        %             for i = 1:nv
+        %                 p = S(t,v(i));
+        %                 X(i+nu,:) = p(1,:);
+        %                 Y(i+nu,:) = p(2,:);
+        %             end
+        %
+        %             h = line(X',Y');
+        %         end
+        %
+        %
+        %         function h = show(obj,nu,nv)
+        %             default_arg('nv',nu)
+        %             S = obj.S;
+        %
+        %             if(nu>2 || nv>2)
+        %                 h_grid = obj.plot(nu,nv);
+        %                 set(h_grid,'Color',[0 0.4470 0.7410]);
+        %             end
+        %
+        %             h_bord = obj.plot(2,2);
+        %             set(h_bord,'Color',[0.8500 0.3250 0.0980]);
+        %             set(h_bord,'LineWidth',2);
+        %         end
+        %
+        %
+        %         % TRANSFORMATIONS
+        %         function ti = translate(obj,a)
+        %             gs = obj.gs;
+        %
+        %             for i = 1:length(gs)
+        %                 new_gs{i} = gs{i}.translate(a);
+        %             end
+        %
+        %             ti = grid.Ti(new_gs{:});
+        %         end
+        %
+        %         % Mirrors the Ti so that the resulting Ti is still left handed.
+        %         %  (Corrected by reversing curves and switching e and w)
+        %         function ti = mirror(obj, a, b)
+        %             gs = obj.gs;
+        %
+        %             new_gs = cell(1,4);
+        %
+        %             new_gs{1} = gs{1}.mirror(a,b).reverse();
+        %             new_gs{3} = gs{3}.mirror(a,b).reverse();
+        %             new_gs{2} = gs{4}.mirror(a,b).reverse();
+        %             new_gs{4} = gs{2}.mirror(a,b).reverse();
+        %
+        %             ti = grid.Ti(new_gs{:});
+        %         end
+        %
+        %         function ti = rotate(obj,a,rad)
+        %             gs = obj.gs;
+        %
+        %             for i = 1:length(gs)
+        %                 new_gs{i} = gs{i}.rotate(a,rad);
+        %             end
+        %
+        %             ti = grid.Ti(new_gs{:});
+        %         end
+        %
+        %         function ti = rotate_edges(obj,n);
+        %             new_gs = cell(1,4);
+        %             for i = 0:3
+        %                 new_i = mod(i - n,4);
+        %                 new_gs{new_i+1} = obj.gs{i+1};
+        %             end
+        %             ti = grid.Ti(new_gs{:});
+        %         end
+        %     end
+        %
+        %     methods(Static)
+        %         function obj = points(p1, p2, p3, p4)
+        %             g1 = grid.Curve.line(p1,p2);
+        %             g2 = grid.Curve.line(p2,p3);
+        %             g3 = grid.Curve.line(p3,p4);
+        %             g4 = grid.Curve.line(p4,p1);
+        %
+        %             obj = grid.Ti(g1,g2,g3,g4);
+        %         end
+        %
+        %         function label(varargin)
+        %             if nargin == 2 && ischar(varargin{2})
+        %                 label_impl(varargin{:});
+        %             else
+        %                 for i = 1:length(varargin)
+        %                     label_impl(varargin{i},inputname(i));
+        %                 end
+        %             end
+        %
+        %
+        %             function label_impl(ti,str)
+        %                 S = ti.S;
+        %
+        %                 pc = S(0.5,0.5);
+        %
+        %                 margin = 0.1;
+        %                 pw = S(  margin,      0.5);
+        %                 pe = S(1-margin,      0.5);
+        %                 ps = S(     0.5,   margin);
+        %                 pn = S(     0.5, 1-margin);
+        %
+        %
+        %                 ti.show(2,2);
+        %                 grid.place_label(pc,str);
+        %                 grid.place_label(pw,'w');
+        %                 grid.place_label(pe,'e');
+        %                 grid.place_label(ps,'s');
+        %                 grid.place_label(pn,'n');
+        %             end
+        %         end
+    end
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Hypsyst3d.m	Thu Oct 13 09:34:30 2016 +0200
@@ -0,0 +1,318 @@
+classdef Hypsyst3d < scheme.Scheme
+    properties
+        m % Number of points in each direction, possibly a vector
+        n %size of system
+        h % Grid spacing
+        x, y, z % Grid
+        X, Y, Z% Values of x and y for each grid point
+        Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces
+        order % Order accuracy for the approximation
+        
+        D % non-stabalized scheme operator
+        A, B, C, E
+        
+        H % Discrete norm
+        % Norms in the x, y and z directions
+        Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
+        I_x,I_y, I_z, I_N
+        e_w, e_e, e_s, e_n, e_b, e_t
+        params %parameters for the coeficient matrice
+    end
+    
+    
+    methods
+        function obj = Hypsyst3d(m, lim, order, A, B,C, E, params)
+            default_arg('E', [])
+            xlim = lim{1};
+            ylim = lim{2};
+            zlim = lim{3};
+            
+            if length(m) == 1
+                m = [m m m];
+            end
+            
+            obj.A=A;
+            obj.B=B;
+            obj.C=C;
+            obj.E=E;
+            m_x = m(1);
+            m_y = m(2);
+            m_z=m(3);
+            obj.params = params;
+            
+            ops_x = sbp.D2Standard(m_x,xlim,order);
+            ops_y = sbp.D2Standard(m_y,ylim,order);
+            ops_z = sbp.D2Standard(m_z,zlim,order);
+            
+            obj.x = ops_x.x;
+            obj.y = ops_y.x;
+            obj.z = ops_z.x;
+            
+            obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1));%% Que pasa?
+            obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1));
+            obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z);
+            
+            obj.Yx=kr(obj.y,ones(m_z,1));
+            obj.Zx=kr(ones(m_y,1),obj.z);
+
+            obj.Xy=kr(obj.x,ones(m_z,1));
+            obj.Zy=kr(ones(m_x,1),obj.z);
+            
+            obj.Xz=kr(obj.x,ones(m_y,1));
+            obj.Yz=kr(ones(m_z,1),obj.y);
+            
+            Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z);
+            Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z);
+            Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z);
+            Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z);
+            
+            obj.n = length(A(obj.params,0,0,0));
+            
+            I_n = eye(obj.n);
+            I_x = speye(m_x);
+            obj.I_x = I_x;
+            I_y = speye(m_y);
+            obj.I_y = I_y;
+            I_z = speye(m_z);
+            obj.I_z = I_z;
+            
+            
+            D1_x = kr(I_n, ops_x.D1, I_y,I_z);
+            obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z);
+            D1_y = kr(I_n, I_x, ops_y.D1,I_z);
+            obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z);
+            D1_z = kr(I_n, I_x, I_y,ops_z.D1);
+            obj.Hzi = kr(I_n, I_x,I_y, ops_y.HI);
+            
+            obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z);
+            obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z);
+            obj.e_s = kr(I_n, I_x, ops_y.e_l,I_z);
+            obj.e_n = kr(I_n, I_x, ops_y.e_r,I_z);
+            obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l);
+            obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r);
+            
+            obj.m=m;
+            obj.h=[ops_x.h ops_y.h ops_x.h];
+            obj.order=order;
+            
+            obj.D=-Aevaluated*D1_x-Bevaluated*D1_y-Cevaluated*D1_z-Eevaluated;
+        end
+        
+        % Closure functions return the opertors applied to the own doamin to close the boundary
+        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        function [closure, penalty] = boundary_condition(obj,boundary,type,L)
+            default_arg('type','char');
+            BM=boundary_matrices(obj,boundary);
+            
+            switch type
+                case{'c','char'}
+                    [closure,penalty]=boundary_condition_char(obj,BM);
+                case{'general'}
+                    [closure,penalty]=boundary_condition_general(obj,BM,boundary,L);
+                otherwise
+                    error('No such boundary condition')
+            end
+        end
+        
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            error('An interface function does not exist yet');
+        end
+        
+        function N = size(obj)
+            N = obj.m;
+        end
+        
+        function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z)
+            params=obj.params;
+            side=max(length(X),length(Y));
+            if isa(mat,'function_handle')
+                [rows,cols]=size(mat(params,0,0,0));
+                matVec=mat(params,X',Y',Z');
+                matVec=sparse(matVec);
+            else
+                matVec=mat;
+                [rows,cols]=size(matVec);
+                side=max(length(X),length(Y));
+                cols=cols/side;
+            end
+            ret=kron(ones(rows,cols),speye(side));
+            
+            for ii=1:rows
+                for jj=1:cols
+                    ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side));
+                end
+            end
+        end
+        
+        
+        function [BM]=boundary_matrices(obj,boundary)
+            params=obj.params;
+            
+            switch boundary
+                case {'w','W','west'}
+                    BM.e_=obj.e_w;
+                    mat=obj.A;
+                    BM.boundpos='l';
+                    BM.Hi=obj.Hxi;
+                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(1),obj.Yx,obj.Zx);
+                    BM.side=length(obj.Yx);
+                case {'e','E','east'}
+                    BM.e_=obj.e_e;
+                    mat=obj.A;
+                    BM.boundpos='r';
+                    BM.Hi=obj.Hxi;
+                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(end),obj.Yx,obj.Zx);
+                    BM.side=length(obj.Yx);
+                case {'s','S','south'}
+                    BM.e_=obj.e_s;
+                    mat=obj.B;
+                    BM.boundpos='l';
+                    BM.Hi=obj.Hyi;
+                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xy,obj.Y(1),obj.Zy);
+                    BM.side=length(obj.Xy);
+                case {'n','N','north'}
+                    BM.e_=obj.e_n;
+                    mat=obj.B;
+                    BM.boundpos='r';
+                    BM.Hi=obj.Hyi;
+                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xy,obj.Y(end),obj.Zy);
+                    BM.side=length(obj.Xy);
+                case{'b','B','Bottom'}
+                    BM.e_=obj.e_b;
+                    mat=obj.C;
+                    BM.boundpos='l';
+                    BM.Hi=obj.Hzi;
+                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(1));
+                    BM.side=length(obj.Xz);
+                case{'t','T','Top'}
+                    BM.e_=obj.e_t;
+                    mat=obj.C;
+                    BM.boundpos='r';
+                    BM.Hi=obj.Hzi;
+                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(end));
+                    BM.side=length(obj.Xz);
+            end
+            
+            BM.pos=signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3);
+        end
+        
+        
+        function [closure, penalty]=boundary_condition_char(obj,BM)
+            side = BM.side;
+            pos = BM.pos;
+            neg = BM.neg;
+            zeroval=BM.zeroval;
+            V = BM.V;
+            Vi = BM.Vi;
+            Hi=BM.Hi;
+            D=BM.D;
+            e_=BM.e_;
+            
+            switch BM.boundpos
+                case {'l'}
+                    tau=sparse(obj.n*side,pos);
+                    Vi_plus=Vi(1:pos,:);
+                    tau(1:pos,:)=-abs(D(1:pos,1:pos));
+                    closure=Hi*e_*V*tau*Vi_plus*e_';
+                    penalty=-Hi*e_*V*tau*Vi_plus;
+                case {'r'}
+                    tau=sparse(obj.n*side,neg);
+                    tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
+                    Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:);
+                    closure=Hi*e_*V*tau*Vi_minus*e_';
+                    penalty=-Hi*e_*V*tau*Vi_minus;
+            end
+        end
+        
+        
+        function [closure,penalty]=boundary_condition_general(obj,BM,boundary,L)
+            side = BM.side;
+            pos = BM.pos;
+            neg = BM.neg;
+            zeroval=BM.zeroval;
+            V = BM.V;
+            Vi = BM.Vi;
+            Hi=BM.Hi;
+            D=BM.D;
+            e_=BM.e_;
+            switch boundary
+                case {'w','W','west'}                    
+                    L=obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx);
+                case {'e','E','east'}
+                    L=obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx);
+                case {'s','S','south'}
+                    L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy);
+                case {'n','N','north'}
+                    L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy);
+                case {'b','B','bottom'}
+                     L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1));
+                case {'t','T','top'}   
+                    L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end));
+            end
+            
+            switch BM.boundpos
+                case {'l'}
+                    tau=sparse(obj.n*side,pos);
+                    Vi_plus=Vi(1:pos,:);
+                    Vi_minus=Vi(pos+zeroval+1:obj.n*side,:);
+                    V_plus=V(:,1:pos);
+                    V_minus=V(:,(pos+zeroval)+1:obj.n*side);
+                    
+                    tau(1:pos,:)=-abs(D(1:pos,1:pos));
+                    R=-inv(L*V_plus)*(L*V_minus);
+                    closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
+                    penalty=-Hi*e_*V*tau*inv(L*V_plus)*L;
+                case {'r'}
+                    tau=sparse(obj.n*side,neg);
+                    tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
+                    Vi_plus=Vi(1:pos,:);
+                    Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:);
+                    
+                    V_plus=V(:,1:pos);
+                    V_minus=V(:,(pos+zeroval)+1:obj.n*side);
+                    R=-inv(L*V_minus)*(L*V_plus);
+                    closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
+                    penalty=-Hi*e_*V*tau*inv(L*V_minus)*L;
+            end
+        end
+        
+        
+        function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z)
+            params=obj.params;
+            syms xs ys zs
+            [V, D]=eig(mat(params,xs,ys,zs));
+            xs=x;
+            ys=y;
+            zs=z;
+            
+            
+            side=max(length(x),length(y));
+            Dret=zeros(obj.n,side*obj.n);
+            Vret=zeros(obj.n,side*obj.n);
+            for ii=1:obj.n
+                for jj=1:obj.n
+                    Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii));
+                    Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii));
+                end
+            end
+            
+            D=sparse(Dret);
+            V=sparse(Vret);
+            V=obj.evaluateCoefficientMatrix(V,x,y,z);
+            D=obj.evaluateCoefficientMatrix(D,x,y,z);
+            DD=diag(D);
+            
+            poseig=(DD>0);
+            zeroeig=(DD==0);
+            negeig=(DD<0);
+            
+            D=diag([DD(poseig); DD(zeroeig); DD(negeig)]);
+            V=[V(:,poseig) V(:,zeroeig) V(:,negeig)];
+            Vi=inv(V);
+            signVec=[sum(poseig),sum(zeroeig),sum(negeig)];
+        end
+    end
+end
\ No newline at end of file