Mercurial > repos > public > sbplib
changeset 1147:c322a9454d75 feature/rv
Rename scheme according to conventions
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 19 Jan 2019 17:22:09 +0100 |
parents | 52f59d27b40f |
children | 0a5503a08a36 |
files | +scheme/Burgers2D.m +scheme/Burgers2d.m |
diffstat | 2 files changed, 215 insertions(+), 215 deletions(-) [+] |
line wrap: on
line diff
--- a/+scheme/Burgers2D.m Sat Jan 19 17:20:14 2019 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,215 +0,0 @@ -classdef Burgers2D < scheme.Scheme - properties - grid % Physical grid - order % Order accuracy for the approximation - - D % Non-stabilized scheme operator - H % Discrete norm - H_inv % Norm inverse - halfnorm_inv % Cell array halfnorm operators - e_l % Cell array of left boundary operators - e_r % Cell array of right boundary operators - d_l % Cell array of left boundary derivative operators - d_r % Cell array of right boundary derivative operators - end - - methods - function obj = Burgers2D(g, operator_type, order, dissipation) - if ~isa(g, 'grid.Cartesian') || g.D() ~= 2 - error('Grid must be 2d cartesian'); - end - - obj.grid = g; - obj.order = order; - - % Create cell array of 1D operators. For example D1_1d{1} = D1_x, D1_1d{2} = D1_y. - [Dp_1d, Dm_1d, H_1d, H_inv_1d, d_l_1d, d_r_1d, e_l_1d, e_r_1d, I, DissipationOp_1d] = ... - obj.assemble1DOperators(g, operator_type, order, dissipation); - - %% 2D-operators - % D1 - D1_1d{1} = (Dp_1d{1} + Dp_1d{1})/2; - D1_1d{2} = (Dp_1d{2} + Dp_1d{2})/2; - D1_2d = obj.extendOperatorTo2D(D1_1d, I); - D1 = D1_2d{1} + D1_2d{2}; - % D2 - - Dp_2d = obj.extendOperatorTo2D(Dp_1d, I); - Dm_2d = obj.extendOperatorTo2D(Dm_1d, I); - D2 = @(viscosity) Dm_2d{1}*spdiag(viscosity)*Dp_2d{1} + Dm_2d{2}*spdiag(viscosity)*Dp_2d{2}; - % m = g.size(); - % ind = grid.funcToMatrix(g, 1:g.N()); - % for i = 1:g.D() - % D2_2d{i} = sparse(zeros(g.N())); - % end - % % x-direction - % for i = 1:m(2) - % p = ind(:,i); - % D2_2d{1}(p,p) = @(viscosity) D2_1d{1}(viscosity(p)); - % end - % % y-direction - % for i = 1:m(1) - % p = ind(i,:); - % D2_2d{2}(p,p) = @(viscosity) D2_1d{2}(viscosity(p)); - % end - % D2 = D2_2d{1} + D2_2d{2}; - - obj.d_l = obj.extendOperatorTo2D(d_l_1d, I); - obj.d_r = obj.extendOperatorTo2D(d_r_1d, I); - obj.e_l = obj.extendOperatorTo2D(e_l_1d, I); - obj.e_r = obj.extendOperatorTo2D(e_r_1d, I); - obj.H = kron(H_1d{1},H_1d{2}); - obj.H_inv = kron(H_inv_1d{1},H_inv_1d{2}); - obj.halfnorm_inv = obj.extendOperatorTo2D(H_inv_1d, I); - - % Dissipation operator - switch dissipation - case 'on' - DissOp_2d = obj.extendOperatorTo2D(DissipationOp_1d, I); - DissOp = DissOp_2d{1} + DissOp_2d{2}; - obj.D = @(v, viscosity) -1/2*D1*v.^2 + (D2(viscosity) + max(abs(v))*DissOp)*v; - case 'off' - obj.D = @(v, viscosity) -1/2*D1*v.^2 + D2(viscosity)*v; - end - end - - % Closure functions return the operators applied to the own doamin to close the boundary - % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other domain. - % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. - % type is a string specifying the type of boundary condition if there are several. - % data is a function returning the data that should be applied at the boundary. - function [closure, penalty] = boundary_condition(obj,boundary,type,data) - default_arg('type','robin'); - default_arg('data',0); - [e, d, halfnorm_inv, i_b, s] = obj.get_boundary_ops(boundary); - switch type - % Stable robin-like boundary conditions ((u+-abs(u))*u/3 - eps*u_x)) with +- at left/right boundary - case {'R','robin'} - p = s*halfnorm_inv*e; - closure = @(v, viscosity) p*(((v(i_b)-s*abs(v(i_b)))/3).*(v(i_b)) - ((viscosity(i_b)).*d*v)); - switch class(data) - case 'double' - penalty = s*p*data; - case 'function_handle' - penalty = @(t) s*p*data(t); - otherwise - error('Wierd data argument!') - end - otherwise - error('No such boundary condition: type = %s',type); - end - end - - % Ruturns the boundary ops, half-norm, boundary indices and sign for the boundary specified by the string boundary. - % The right boundary for each coordinate direction is considered the positive boundary - function [e, d, halfnorm_inv, ind_boundary, s] = get_boundary_ops(obj,boundary) - ind = grid.funcToMatrix(obj.grid, 1:obj.grid.N()); - switch boundary - case 'w' - e = obj.e_l{1}; - d = obj.d_l{1}; - halfnorm_inv = obj.halfnorm_inv{1}; - ind_boundary = ind(1,:); - s = -1; - case 'e' - e = obj.e_r{1}; - d = obj.d_r{1}; - halfnorm_inv = obj.halfnorm_inv{1}; - - ind_boundary = ind(end,:); - s = 1; - case 's' - e = obj.e_l{2}; - d = obj.d_l{2}; - halfnorm_inv = obj.halfnorm_inv{2}; - ind_boundary = ind(:,1); - s = -1; - case 'n' - e = obj.e_r{2}; - d = obj.d_r{2}; - halfnorm_inv = obj.halfnorm_inv{2}; - ind_boundary = ind(:,end); - s = 1; - otherwise - error('No such boundary: boundary = %s',boundary); - end - end - - function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) - error('An interface function does not exist yet'); - end - - function N = size(obj) - N = obj.grid.m; - end - end - - methods(Static) - function [Dp, Dm, H, Hi, d_l, d_r, e_l, e_r, I, DissipationOp] = assemble1DOperators(g, operator_type, order, dissipation) - dim = g.D(); - I = cell(dim,1); - D1 = cell(dim,1); - D2 = cell(dim,1); - H = cell(dim,1); - Hi = cell(dim,1); - e_l = cell(dim,1); - e_r = cell(dim,1); - d1_l = cell(dim,1); - d1_r = cell(dim,1); - DissipationOp = cell(dim,1); - for i = 1:dim - switch operator_type - % case 'narrow' - % ops = sbp.D4Variable(g.m(i), g.lim{i}, order); - % D1{i} = ops.D1; - % D2{i} = ops.D2; - % d_l{i} = ops.d1_l'; - % d_r{i} = ops.d1_r'; - % if (strcmp(dissipation,'on')) - % DissipationOp{i} = -1*sbp.dissipationOperator(g.m(i), order, ops.HI); - % end - % case 'upwind-' - % ops = sbp.D1Upwind(g.m(i), g.lim{i}, order); - % D1{i} = (ops.Dp + ops.Dm)/2; - % D2{i} = @(viscosity) ops.Dp*spdiag(viscosity)*ops.Dm; - % d_l{i} = ops.e_l'*ops.Dm; - % d_r{i} = ops.e_r'*ops.Dm; - % if (strcmp(dissipation,'on')) - % DissipationOp{i} = (ops.Dp-ops.Dm)/2; - % end - case 'upwind+' - ops = sbp.D1Upwind(g.m(i), g.lim{i}, order); - Dp{i} = ops.Dp; - Dm{i} = ops.Dm; - % D1{i} = (ops.Dp + ops.Dm)/2; - % D2{i} = @(viscosity) ops.Dm*spdiag(viscosity)*ops.Dp; - d_l{i} = ops.e_l'*ops.Dp; - d_r{i} = ops.e_r'*ops.Dp; - if (strcmp(dissipation,'on')) - DissipationOp{i} = (ops.Dp-ops.Dm)/2; - end - % case 'upwind+-' - % ops = sbp.D1Upwind(g.m(i), g.lim{i}, order); - % D1{i} = (ops.Dp + ops.Dm)/2; - % D2{i} = @(viscosity) (ops.Dp*spdiag(viscosity)*ops.Dm + ops.Dm*spdiag(viscosity)*ops.Dp)/2; - % d_l{i} = ops.e_l'*D1; - % d_r{i} = ops.e_r'*D1; - % if (strcmp(dissipation,'on')) - % DissipationOp{i} = (ops.Dp-ops.Dm)/2; - % end - otherwise - error('Other operator types not yet supported', operator_type); - end - H{i} = ops.H; - Hi{i} = ops.HI; - e_l{i} = ops.e_l; - e_r{i} = ops.e_r; - I{i} = speye(g.m(i)); - end - end - function op_2d = extendOperatorTo2D(op, I) - op_2d{1} = kr(op{1}, I{2}); - op_2d{2} = kr(I{1}, op{2}); - end - end -end \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Burgers2d.m Sat Jan 19 17:22:09 2019 +0100 @@ -0,0 +1,215 @@ +classdef Burgers2D < scheme.Scheme + properties + grid % Physical grid + order % Order accuracy for the approximation + + D % Non-stabilized scheme operator + H % Discrete norm + H_inv % Norm inverse + halfnorm_inv % Cell array halfnorm operators + e_l % Cell array of left boundary operators + e_r % Cell array of right boundary operators + d_l % Cell array of left boundary derivative operators + d_r % Cell array of right boundary derivative operators + end + + methods + function obj = Burgers2D(g, operator_type, order, dissipation) + if ~isa(g, 'grid.Cartesian') || g.D() ~= 2 + error('Grid must be 2d cartesian'); + end + + obj.grid = g; + obj.order = order; + + % Create cell array of 1D operators. For example D1_1d{1} = D1_x, D1_1d{2} = D1_y. + [Dp_1d, Dm_1d, H_1d, H_inv_1d, d_l_1d, d_r_1d, e_l_1d, e_r_1d, I, DissipationOp_1d] = ... + obj.assemble1DOperators(g, operator_type, order, dissipation); + + %% 2D-operators + % D1 + D1_1d{1} = (Dp_1d{1} + Dp_1d{1})/2; + D1_1d{2} = (Dp_1d{2} + Dp_1d{2})/2; + D1_2d = obj.extendOperatorTo2D(D1_1d, I); + D1 = D1_2d{1} + D1_2d{2}; + % D2 + + Dp_2d = obj.extendOperatorTo2D(Dp_1d, I); + Dm_2d = obj.extendOperatorTo2D(Dm_1d, I); + D2 = @(viscosity) Dm_2d{1}*spdiag(viscosity)*Dp_2d{1} + Dm_2d{2}*spdiag(viscosity)*Dp_2d{2}; + % m = g.size(); + % ind = grid.funcToMatrix(g, 1:g.N()); + % for i = 1:g.D() + % D2_2d{i} = sparse(zeros(g.N())); + % end + % % x-direction + % for i = 1:m(2) + % p = ind(:,i); + % D2_2d{1}(p,p) = @(viscosity) D2_1d{1}(viscosity(p)); + % end + % % y-direction + % for i = 1:m(1) + % p = ind(i,:); + % D2_2d{2}(p,p) = @(viscosity) D2_1d{2}(viscosity(p)); + % end + % D2 = D2_2d{1} + D2_2d{2}; + + obj.d_l = obj.extendOperatorTo2D(d_l_1d, I); + obj.d_r = obj.extendOperatorTo2D(d_r_1d, I); + obj.e_l = obj.extendOperatorTo2D(e_l_1d, I); + obj.e_r = obj.extendOperatorTo2D(e_r_1d, I); + obj.H = kron(H_1d{1},H_1d{2}); + obj.H_inv = kron(H_inv_1d{1},H_inv_1d{2}); + obj.halfnorm_inv = obj.extendOperatorTo2D(H_inv_1d, I); + + % Dissipation operator + switch dissipation + case 'on' + DissOp_2d = obj.extendOperatorTo2D(DissipationOp_1d, I); + DissOp = DissOp_2d{1} + DissOp_2d{2}; + obj.D = @(v, viscosity) -1/2*D1*v.^2 + (D2(viscosity) + max(abs(v))*DissOp)*v; + case 'off' + obj.D = @(v, viscosity) -1/2*D1*v.^2 + D2(viscosity)*v; + end + end + + % Closure functions return the operators applied to the own doamin to close the boundary + % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other domain. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + function [closure, penalty] = boundary_condition(obj,boundary,type,data) + default_arg('type','robin'); + default_arg('data',0); + [e, d, halfnorm_inv, i_b, s] = obj.get_boundary_ops(boundary); + switch type + % Stable robin-like boundary conditions ((u+-abs(u))*u/3 - eps*u_x)) with +- at left/right boundary + case {'R','robin'} + p = s*halfnorm_inv*e; + closure = @(v, viscosity) p*(((v(i_b)-s*abs(v(i_b)))/3).*(v(i_b)) - ((viscosity(i_b)).*d*v)); + switch class(data) + case 'double' + penalty = s*p*data; + case 'function_handle' + penalty = @(t) s*p*data(t); + otherwise + error('Wierd data argument!') + end + otherwise + error('No such boundary condition: type = %s',type); + end + end + + % Ruturns the boundary ops, half-norm, boundary indices and sign for the boundary specified by the string boundary. + % The right boundary for each coordinate direction is considered the positive boundary + function [e, d, halfnorm_inv, ind_boundary, s] = get_boundary_ops(obj,boundary) + ind = grid.funcToMatrix(obj.grid, 1:obj.grid.N()); + switch boundary + case 'w' + e = obj.e_l{1}; + d = obj.d_l{1}; + halfnorm_inv = obj.halfnorm_inv{1}; + ind_boundary = ind(1,:); + s = -1; + case 'e' + e = obj.e_r{1}; + d = obj.d_r{1}; + halfnorm_inv = obj.halfnorm_inv{1}; + + ind_boundary = ind(end,:); + s = 1; + case 's' + e = obj.e_l{2}; + d = obj.d_l{2}; + halfnorm_inv = obj.halfnorm_inv{2}; + ind_boundary = ind(:,1); + s = -1; + case 'n' + e = obj.e_r{2}; + d = obj.d_r{2}; + halfnorm_inv = obj.halfnorm_inv{2}; + ind_boundary = ind(:,end); + s = 1; + otherwise + error('No such boundary: boundary = %s',boundary); + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + error('An interface function does not exist yet'); + end + + function N = size(obj) + N = obj.grid.m; + end + end + + methods(Static) + function [Dp, Dm, H, Hi, d_l, d_r, e_l, e_r, I, DissipationOp] = assemble1DOperators(g, operator_type, order, dissipation) + dim = g.D(); + I = cell(dim,1); + D1 = cell(dim,1); + D2 = cell(dim,1); + H = cell(dim,1); + Hi = cell(dim,1); + e_l = cell(dim,1); + e_r = cell(dim,1); + d1_l = cell(dim,1); + d1_r = cell(dim,1); + DissipationOp = cell(dim,1); + for i = 1:dim + switch operator_type + % case 'narrow' + % ops = sbp.D4Variable(g.m(i), g.lim{i}, order); + % D1{i} = ops.D1; + % D2{i} = ops.D2; + % d_l{i} = ops.d1_l'; + % d_r{i} = ops.d1_r'; + % if (strcmp(dissipation,'on')) + % DissipationOp{i} = -1*sbp.dissipationOperator(g.m(i), order, ops.HI); + % end + % case 'upwind-' + % ops = sbp.D1Upwind(g.m(i), g.lim{i}, order); + % D1{i} = (ops.Dp + ops.Dm)/2; + % D2{i} = @(viscosity) ops.Dp*spdiag(viscosity)*ops.Dm; + % d_l{i} = ops.e_l'*ops.Dm; + % d_r{i} = ops.e_r'*ops.Dm; + % if (strcmp(dissipation,'on')) + % DissipationOp{i} = (ops.Dp-ops.Dm)/2; + % end + case 'upwind+' + ops = sbp.D1Upwind(g.m(i), g.lim{i}, order); + Dp{i} = ops.Dp; + Dm{i} = ops.Dm; + % D1{i} = (ops.Dp + ops.Dm)/2; + % D2{i} = @(viscosity) ops.Dm*spdiag(viscosity)*ops.Dp; + d_l{i} = ops.e_l'*ops.Dp; + d_r{i} = ops.e_r'*ops.Dp; + if (strcmp(dissipation,'on')) + DissipationOp{i} = (ops.Dp-ops.Dm)/2; + end + % case 'upwind+-' + % ops = sbp.D1Upwind(g.m(i), g.lim{i}, order); + % D1{i} = (ops.Dp + ops.Dm)/2; + % D2{i} = @(viscosity) (ops.Dp*spdiag(viscosity)*ops.Dm + ops.Dm*spdiag(viscosity)*ops.Dp)/2; + % d_l{i} = ops.e_l'*D1; + % d_r{i} = ops.e_r'*D1; + % if (strcmp(dissipation,'on')) + % DissipationOp{i} = (ops.Dp-ops.Dm)/2; + % end + otherwise + error('Other operator types not yet supported', operator_type); + end + H{i} = ops.H; + Hi{i} = ops.HI; + e_l{i} = ops.e_l; + e_r{i} = ops.e_r; + I{i} = speye(g.m(i)); + end + end + function op_2d = extendOperatorTo2D(op, I) + op_2d{1} = kr(op{1}, I{2}); + op_2d{2} = kr(I{1}, op{2}); + end + end +end \ No newline at end of file