changeset 369:9d1fc984f40d feature/hypsyst

Added some comments and cleaned up the code a little
author Ylva Rydin <ylva.rydin@telia.com>
date Thu, 26 Jan 2017 09:57:24 +0100
parents 53abf04f5e4e
children c2c64ccb6a1e
files +scheme/Hypsyst2d.m +scheme/Hypsyst2dCurve.m +scheme/Hypsyst3d.m +scheme/Hypsyst3dCurve.m +scheme/Wave2dCurve.m
diffstat 5 files changed, 575 insertions(+), 549 deletions(-) [+]
line wrap: on
line diff
--- a/+scheme/Hypsyst2d.m	Wed Jan 25 15:37:12 2017 +0100
+++ b/+scheme/Hypsyst2d.m	Thu Jan 26 09:57:24 2017 +0100
@@ -6,10 +6,10 @@
         x,y % Grid
         X,Y % Values of x and y for each grid point
         order % Order accuracy for the approximation
-
+        
         D % non-stabalized scheme operator
-        A, B, E
-    
+        A, B, E %Coefficient matrices
+        
         H % Discrete norm
         % Norms in the x and y directions
         Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
@@ -17,14 +17,14 @@
         e_w, e_e, e_s, e_n
         params %parameters for the coeficient matrice
     end
-
-
+    
     methods
+        %Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Eu
         function obj = Hypsyst2d(m, lim, order, A, B, E, params)
             default_arg('E', [])
             xlim = lim{1};
             ylim = lim{2};
-
+            
             if length(m) == 1
                 m = [m m];
             end
@@ -32,50 +32,50 @@
             obj.A=A;
             obj.B=B;
             obj.E=E;
-
+            
             m_x = m(1);
             m_y = m(2);
             obj.params = params;
-
+            
             ops_x = sbp.D2Standard(m_x,xlim,order);
             ops_y = sbp.D2Standard(m_y,ylim,order);
-
+            
             obj.x = ops_x.x;
             obj.y = ops_y.x;
-
+            
             obj.X = kr(obj.x,ones(m_y,1));
-            obj.Y = kr(ones(m_x,1),obj.y);         
-
+            obj.Y = kr(ones(m_x,1),obj.y);
+            
             Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y);
             Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y);
             Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y);
-
+            
             obj.n = length(A(obj.params,0,0));
-
+            
             I_n = eye(obj.n);I_x = speye(m_x);
             obj.I_x = I_x;
             I_y = speye(m_y);
             obj.I_y = I_y;
-
-
+            
+            
             D1_x = kr(I_n, ops_x.D1, I_y);
             obj.Hxi = kr(I_n, ops_x.HI, I_y);
             D1_y = kr(I_n, I_x, ops_y.D1);
             obj.Hyi = kr(I_n, I_x, ops_y.HI);
-
+            
             obj.e_w = kr(I_n, ops_x.e_l, I_y);
             obj.e_e = kr(I_n, ops_x.e_r, I_y);
             obj.e_s = kr(I_n, I_x, ops_y.e_l);
             obj.e_n = kr(I_n, I_x, ops_y.e_r);
-
-            obj.m=m;
-            obj.h=[ops_x.h ops_y.h];
-            obj.order=order;
-
-            obj.D=-Aevaluated*D1_x-Bevaluated*D1_y-Eevaluated;
-
+            
+            obj.m = m;
+            obj.h = [ops_x.h ops_y.h];
+            obj.order = order;
+            
+            obj.D = -Aevaluated*D1_x-Bevaluated*D1_y-Eevaluated;
+            
         end
-
+        
         % Closure functions return the opertors applied to the own doamin to close the boundary
         % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
         %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
@@ -85,206 +85,217 @@
             default_arg('type','char');
             switch type
                 case{'c','char'}
-                    [closure,penalty]=boundary_condition_char(obj,boundary);
+                    [closure,penalty] = boundary_condition_char(obj,boundary);
                 case{'general'}
-                    [closure,penalty]=boundary_condition_general(obj,boundary,L);
+                    [closure,penalty] = boundary_condition_general(obj,boundary,L);
                 otherwise
                     error('No such boundary condition')
             end
         end
-
+        
         function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
             error('An interface function does not exist yet');
         end
-
+        
         function N = size(obj)
             N = obj.m;
         end
-
+        
         function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y)
-            params=obj.params;
-
+            params = obj.params;
+            
             if isa(mat,'function_handle')
-                [rows,cols]=size(mat(params,0,0));
-                matVec=mat(params,X',Y');
-                matVec=sparse(matVec);
-                side=max(length(X),length(Y));
+                [rows,cols] = size(mat(params,0,0));
+                matVec = mat(params,X',Y');
+                matVec = sparse(matVec);
+                side = max(length(X),length(Y));
             else
-                matVec=mat;
-                [rows,cols]=size(matVec);
-                side=max(length(X),length(Y));
-                cols=cols/side;
+                matVec = mat;
+                [rows,cols] = size(matVec);
+                side = max(length(X),length(Y));
+                cols = cols/side;
             end
-            ret=cell(rows,cols);
-
-            for ii=1:rows
+            ret = cell(rows,cols);
+            
+            for ii = 1:rows
                 for jj=1:cols
-                    ret{ii,jj}=diag(matVec(ii,(jj-1)*side+1:jj*side));
+                    ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side));
                 end
             end
-            ret=cell2mat(ret);
+            ret = cell2mat(ret);
         end
-
-
-        function [closure, penalty]=boundary_condition_char(obj,boundary)
-            params=obj.params;
-            x=obj.x; y=obj.y;
-          
+        
+        %Characteristic boundary conditions
+        function [closure, penalty] = boundary_condition_char(obj,boundary)
+            params = obj.params;
+            x = obj.x;
+            y = obj.y;
+            
             switch boundary
                 case {'w','W','west'}
-                    e_=obj.e_w;
-                    mat=obj.A;
-                    boundPos='l';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y);
-                    side=max(length(y));
+                    e_ = obj.e_w;
+                    mat = obj.A;
+                    boundPos = 'l';
+                    Hi = obj.Hxi;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x(1),y);
+                    side = max(length(y));
                 case {'e','E','east'}
-                    e_=obj.e_e;
-                    mat=obj.A;
-                    boundPos='r';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y);
-                    side=max(length(y));
+                    e_ = obj.e_e;
+                    mat = obj.A;
+                    boundPos = 'r';
+                    Hi = obj.Hxi;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x(end),y);
+                    side = max(length(y));
                 case {'s','S','south'}
-                    e_=obj.e_s;
-                    mat=obj.B;
-                    boundPos='l';
-                    Hi=obj.Hyi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1));
-                    side=max(length(x));
+                    e_ = obj.e_s;
+                    mat = obj.B;
+                    boundPos = 'l';
+                    Hi = obj.Hyi;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(1));
+                    side = max(length(x));
                 case {'n','N','north'}
-                    e_=obj.e_n;
-                    mat=obj.B;
-                    boundPos='r';
-                    Hi=obj.Hyi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end));
-                    side=max(length(x));
+                    e_ = obj.e_n;
+                    mat = obj.B;
+                    boundPos = 'r';
+                    Hi = obj.Hyi;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(end));
+                    side = max(length(x));
             end
-
-            pos=signVec(1); zeroval=signVec(2); neg=signVec(3);
-
+            pos = signVec(1);
+            zeroval = signVec(2);
+            neg = signVec(3);
+            
             switch boundPos
                 case {'l'}
-                    tau=sparse(obj.n*side,pos);
-                    Vi_plus=Vi(1:pos,:);
-                    tau(1:pos,:)=-abs(D(1:pos,1:pos));
-                    closure=Hi*e_*V*tau*Vi_plus*e_';
-                    penalty=-Hi*e_*V*tau*Vi_plus;
+                    tau = sparse(obj.n*side,pos);
+                    Vi_plus = Vi(1:pos,:);
+                    tau(1:pos,:) = -abs(D(1:pos,1:pos));
+                    closure = Hi*e_*V*tau*Vi_plus*e_';
+                    penalty = -Hi*e_*V*tau*Vi_plus;
                 case {'r'}
-                    tau=sparse(obj.n*side,neg);
-                    tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
-                    Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:);
-                    closure=Hi*e_*V*tau*Vi_minus*e_';
-                    penalty=-Hi*e_*V*tau*Vi_minus;
+                    tau = sparse(obj.n*side,neg);
+                    tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
+                    Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
+                    closure = Hi*e_*V*tau*Vi_minus*e_';
+                    penalty = -Hi*e_*V*tau*Vi_minus;
             end
         end
-
-
-        function [closure,penalty]=boundary_condition_general(obj,boundary,L)
-            params=obj.params;
-            x=obj.x; y=obj.y;
-
+        
+        % General boundary condition in the form Lu=g(x)
+        function [closure,penalty] = boundary_condition_general(obj,boundary,L)
+            params = obj.params;
+            x = obj.x;
+            y = obj.y;
+            
             switch boundary
                 case {'w','W','west'}
-                    e_=obj.e_w;
-                    mat=obj.A;
-                    boundPos='l';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y);
-                    L=obj.evaluateCoefficientMatrix(L,x(1),y);
-                    side=max(length(y));
+                    e_ = obj.e_w;
+                    mat = obj.A;
+                    boundPos = 'l';
+                    Hi = obj.Hxi;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x(1),y);
+                    L = obj.evaluateCoefficientMatrix(L,x(1),y);
+                    side = max(length(y));
                 case {'e','E','east'}
-                    e_=obj.e_e;
-                    mat=obj.A;
-                    boundPos='r';
-                    Hi=obj.Hxi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y);
-                    L=obj.evaluateCoefficientMatrix(L,x(end),y);
-                    side=max(length(y));
+                    e_ = obj.e_e;
+                    mat = obj.A;
+                    boundPos = 'r';
+                    Hi = obj.Hxi;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x(end),y);
+                    L = obj.evaluateCoefficientMatrix(L,x(end),y);
+                    side = max(length(y));
                 case {'s','S','south'}
-                    e_=obj.e_s;
-                    mat=obj.B;
-                    boundPos='l';
-                    Hi=obj.Hyi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1));
-                    L=obj.evaluateCoefficientMatrix(L,x,y(1));
-                    side=max(length(x));
+                    e_ = obj.e_s;
+                    mat = obj.B;
+                    boundPos = 'l';
+                    Hi = obj.Hyi;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(1));
+                    L = obj.evaluateCoefficientMatrix(L,x,y(1));
+                    side = max(length(x));
                 case {'n','N','north'}
-                    e_=obj.e_n;
-                    mat=obj.B;
-                    boundPos='r';
-                    Hi=obj.Hyi;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end));
-                    L=obj.evaluateCoefficientMatrix(L,x,y(end));
-                    side=max(length(x));
+                    e_ = obj.e_n;
+                    mat = obj.B;
+                    boundPos = 'r';
+                    Hi = obj.Hyi;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(end));
+                    L = obj.evaluateCoefficientMatrix(L,x,y(end));      
+                    side = max(length(x));
             end
-
-            pos=signVec(1); zeroval=signVec(2); neg=signVec(3);
-
+            
+            pos = signVec(1);
+            zeroval = signVec(2);
+            neg = signVec(3);
+            
             switch boundPos
                 case {'l'}
-                    tau=sparse(obj.n*side,pos);
-                    Vi_plus=Vi(1:pos,:);
-                    Vi_minus=Vi(pos+zeroval+1:obj.n*side,:);
-                    V_plus=V(:,1:pos);
-                    V_minus=V(:,(pos+zeroval)+1:obj.n*side);
-
-                    tau(1:pos,:)=-abs(D(1:pos,1:pos));
-                    R=-inv(L*V_plus)*(L*V_minus);
-                    closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
-                    penalty=-Hi*e_*V*tau*inv(L*V_plus)*L;
+                    tau = sparse(obj.n*side,pos);
+                    Vi_plus = Vi(1:pos,:);
+                    Vi_minus = Vi(pos+zeroval+1:obj.n*side,:);
+                    V_plus = V(:,1:pos);
+                    V_minus = V(:,(pos+zeroval)+1:obj.n*side);
+                    
+                    tau(1:pos,:) = -abs(D(1:pos,1:pos));
+                    R = -inv(L*V_plus)*(L*V_minus);
+                    closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
+                    penalty = -Hi*e_*V*tau*inv(L*V_plus)*L;
                 case {'r'}
-                    tau=sparse(obj.n*side,neg);
-                    tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
-                    Vi_plus=Vi(1:pos,:);
-                    Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:);
-
-                    V_plus=V(:,1:pos);
-                    V_minus=V(:,(pos+zeroval)+1:obj.n*side);
-                    R=-inv(L*V_minus)*(L*V_plus);
-                    closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
-                    penalty=-Hi*e_*V*tau*inv(L*V_minus)*L;
+                    tau = sparse(obj.n*side,neg);
+                    tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
+                    Vi_plus = Vi(1:pos,:);
+                    Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
+                    
+                    V_plus = V(:,1:pos);
+                    V_minus = V(:,(pos+zeroval)+1:obj.n*side);
+                    R = -inv(L*V_minus)*(L*V_plus);
+                    closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
+                    penalty = -Hi*e_*V*tau*inv(L*V_minus)*L;
             end
         end
-
-
-        function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y)
-            params=obj.params;
+        
+        % Function that diagonalizes a symbolic matrix A as A=V*D*Vi
+        % D         is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign
+        %                                    [d+       ]
+        %                               D =  [   d0    ]
+        %                                    [       d-]
+        % signVec   is a vector specifying the number of possitive, zero and negative eigenvalues of D   
+        function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y)
+            params = obj.params;
             syms xs ys
-            [V, D]=eig(mat(params,xs,ys));
-            Vi=inv(V);
-            xs=x; 
-            ys=y;
-           
-            side=max(length(x),length(y));
-            Dret=zeros(obj.n,side*obj.n);
-            Vret=zeros(obj.n,side*obj.n);
-            Viret=zeros(obj.n,side*obj.n);
-            for ii=1:obj.n
-                for jj=1:obj.n
-                    Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii));
-                    Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii));
-                    Viret(jj,(ii-1)*side+1:side*ii)=eval(Vi(jj,ii));
+            [V, D]= eig(mat(params,xs,ys));
+            Vi = inv(V);
+            xs = x;
+            ys = y;
+            
+            side = max(length(x),length(y));
+            Dret = zeros(obj.n,side*obj.n);
+            Vret = zeros(obj.n,side*obj.n);
+            Viret = zeros(obj.n,side*obj.n);
+            
+            for ii = 1:obj.n
+                for jj = 1:obj.n
+                    Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii));
+                    Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii));
+                    Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii));
                 end
             end
-
-            D=sparse(Dret);
-            V=sparse(Vret); 
-            Vi=sparse(Viret);
-            V=obj.evaluateCoefficientMatrix(V,x,y);
-            Vi=obj.evaluateCoefficientMatrix(Vi,x,y);
-            D=obj.evaluateCoefficientMatrix(D,x,y);                       
-            DD=diag(D);
+            
+            D = sparse(Dret);
+            V = sparse(Vret);
+            Vi = sparse(Viret);
+            V = obj.evaluateCoefficientMatrix(V,x,y);
+            Vi = obj.evaluateCoefficientMatrix(Vi,x,y);
+            D = obj.evaluateCoefficientMatrix(D,x,y);
+            DD = diag(D);
             
-            poseig=(DD>0);
-            zeroeig=(DD==0);
-            negeig=(DD<0);
+            poseig = (DD>0);
+            zeroeig = (DD==0);
+            negeig = (DD<0);
             
-            D=diag([DD(poseig); DD(zeroeig); DD(negeig)]);
-            V=[V(:,poseig) V(:,zeroeig) V(:,negeig)];            
-            Vi=[Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];
-            signVec=[sum(poseig),sum(zeroeig),sum(negeig)];
+            D = diag([DD(poseig); DD(zeroeig); DD(negeig)]);
+            V = [V(:,poseig) V(:,zeroeig) V(:,negeig)];
+            Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];
+            signVec = [sum(poseig),sum(zeroeig),sum(negeig)];
         end
-
+        
     end
 end
\ No newline at end of file
--- a/+scheme/Hypsyst2dCurve.m	Wed Jan 25 15:37:12 2017 +0100
+++ b/+scheme/Hypsyst2dCurve.m	Thu Jan 26 09:57:24 2017 +0100
@@ -1,362 +1,378 @@
 classdef Hypsyst2dCurve < scheme.Scheme
     properties
         m % Number of points in each direction, possibly a vector
-        n %size of system
+        n % size of system
         h % Grid spacing
         X,Y % Values of x and y for each grid point
         
-        J, Ji %Jacobaian and inverse Jacobian
+        J, Ji % Jacobaian and inverse Jacobian
         xi,eta
         Xi,Eta
         
         A,B
-        X_eta, Y_eta 
+        X_eta, Y_eta
         X_xi,Y_xi
         order % Order accuracy for the approximation
-
+        
         D % non-stabalized scheme operator
         Ahat, Bhat, E
-    
+        
         H % Discrete norm
-        Hxii,Hetai % Kroneckerd norms in xi and eta. 
+        Hxii,Hetai % Kroneckerd norms in xi and eta.
         I_xi,I_eta, I_N, onesN
         e_w, e_e, e_s, e_n
         index_w, index_e,index_s,index_n
-        params %parameters for the coeficient matrice
+        params % Parameters for the coeficient matrice
     end
-
-
+    
+    
     methods
+        % Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Eu
         function obj = Hypsyst2dCurve(m, order, A, B, E, params, ti)
             default_arg('E', [])
             xilim = {0 1};
             etalim = {0 1};
-
+            
             if length(m) == 1
                 m = [m m];
             end
             obj.params = params;
             obj.A=A;
             obj.B=B;
-                        
+            
             obj.Ahat=@(params,x,y,x_eta,y_eta)(A(params,x,y).*y_eta-B(params,x,y).*x_eta);
             obj.Bhat=@(params,x,y,x_xi,y_xi)(B(params,x,y).*x_xi-A(params,x,y).*y_xi);
             obj.E=@(params,x,y,~,~)E(params,x,y);
-
+            
             m_xi = m(1);
             m_eta = m(2);
             m_tot=m_xi*m_eta;
-       
+            
             ops_xi = sbp.D2Standard(m_xi,xilim,order);
             ops_eta = sbp.D2Standard(m_eta,etalim,order);
-
+            
             obj.xi = ops_xi.x;
             obj.eta = ops_eta.x;
-
+            
             obj.Xi = kr(obj.xi,ones(m_eta,1));
-            obj.Eta = kr(ones(m_xi,1),obj.eta);         
-
+            obj.Eta = kr(ones(m_xi,1),obj.eta);
+            
             obj.n = length(A(obj.params,0,0));
             obj.onesN=ones(obj.n);
             
             obj.index_w=1:m_eta;
-            obj.index_e=(m_tot-m_eta+1):m_tot;
+            obj.index_e=(m_tot-m_e        
+        
+        metric_termsta+1):m_tot;
             obj.index_s=1:m_eta:(m_tot-m_eta+1);
             obj.index_n=(m_eta):m_eta:m_tot;
-
+            
             I_n = eye(obj.n);
             I_xi = speye(m_xi);
             obj.I_xi = I_xi;
             I_eta = speye(m_eta);
             obj.I_eta = I_eta;
-
+            
             D1_xi = kr(I_n, ops_xi.D1, I_eta);
             obj.Hxii = kr(I_n, ops_xi.HI, I_eta);
             D1_eta = kr(I_n, I_xi, ops_eta.D1);
             obj.Hetai = kr(I_n, I_xi, ops_eta.HI);
-
+            
             obj.e_w = kr(I_n, ops_xi.e_l, I_eta);
             obj.e_e = kr(I_n, ops_xi.e_r, I_eta);
             obj.e_s = kr(I_n, I_xi, ops_eta.e_l);
-            obj.e_n = kr(I_n, I_xi, ops_eta.e_r);
+            obj.e_n = kr(I_n, I_xi,         
+        
+        metric_termsops_eta.e_r);
             
             [X,Y] = ti.map(obj.xi,obj.eta);
-                   
+            
             [x_xi,x_eta] = gridDerivatives(X,ops_xi.D1,ops_eta.D1);
             [y_xi,y_eta] = gridDerivatives(Y,ops_xi.D1, ops_eta.D1);
-                    
-            obj.X=reshape(X,m_tot,1);
-            obj.Y=reshape(Y,m_tot,1);
-            obj.X_xi=reshape(x_xi,m_tot,1);
-            obj.Y_xi=reshape(y_xi,m_tot,1);
-            obj.X_eta=reshape(x_eta,m_tot,1);
-            obj.Y_eta=reshape(y_eta,m_tot,1);
-           
+            
+            obj.X = reshape(X,m_tot,1);
+            obj.Y = reshape(Y,m_tot,1);
+            obj.X_xi = reshape(x_xi,m_tot,1);
+            obj.Y_xi = reshape(y_xi,m_tot,1);
+            obj.X_eta = reshape(x_eta,m_tot,1);
+            obj.Y_eta = reshape(y_eta,m_tot,1);
+            
             Ahat_evaluated = obj.evaluateCoefficientMatrix(obj.Ahat, obj.X, obj.Y,obj.X_eta,obj.Y_eta);
             Bhat_evaluated = obj.evaluateCoefficientMatrix(obj.Bhat, obj.X, obj.Y,obj.X_xi,obj.Y_xi);
             E_evaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,[],[]);
-
-            obj.m=m;
-            obj.h=[ops_xi.h ops_eta.h];
-            obj.order=order;
-            obj.J=obj.X_xi.*obj.Y_eta - obj.X_eta.*obj.Y_xi;  
-            obj.Ji =kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot));
-
-            obj.D=obj.Ji*(-Ahat_evaluated*D1_xi-Bhat_evaluated*D1_eta)-E_evaluated;
-
+            
+            obj.m = m;
+            obj.h = [ops_xi.h ops_eta.h];
+            obj.order = order;
+            obj.J = obj.X_xi.*obj.Y_eta - obj.X_eta.*obj.Y_xi;
+            obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot));
+            
+            obj.D = obj.Ji*(-Ahat_evaluated*D1_xi-Bhat_evaluated*D1_eta)-E_evaluated;
+            
         end
-
+        
         % Closure functions return the opertors applied to the own doamin to close the boundary
         % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
-        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w',General boundary conditions'n','s'.
         %       type                is a string specifying the type of boundary condition if there are several.
         %       data                is a function returning the data that should be applied at the boundary.
         function [closure, penalty] = boundary_condition(obj,boundary,type,L)
             default_arg('type','char');
             switch type
                 case{'c','char'}
-                    [closure,penalty]=boundary_condition_char(obj,boundary);
+                    [closure,penalty] = boundary_condition_char(obj,boundary);
                 case{'general'}
-                    [closure,penalty]=boundary_condition_general(obj,boundary,L);
+                    [closure,penalty] = boundary_condition_general(obj,boundary,L);
                 otherwise
                     error('No such boundary condition')
             end
         end
-
-        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+        
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundaryGeneral boundary conditions)
             error('An interface function does not exist yet');
         end
-
+        
         function N = size(obj)
             N = obj.m;
         end
-
+        
         function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y,x_,y_)
-            params=obj.params;
-
+            params = obj.params;
+            
             if isa(mat,'function_handle')
-                [rows,cols]=size(mat(params,0,0,0,0));
-                x_=kr(obj.onesN,x_);
-                y_=kr(obj.onesN,y_);
-                matVec=mat(params,X',Y',x_',y_');
-                matVec=sparse(matVec);
-                side=max(length(X),length(Y));
+                [rows,cols] = size(mat(params,0,0,0,0));
+                x_ = kr(obj.onesN,x_);
+                y_ = kr(obj.onesN,y_);
+                matVec = mat(params,X',Y',x_',y_');
+                matVec = sparse(matVec);
+                side = max(length(X),length(Y));
             else
-                matVec=mat;
-                [rows,cols]=size(matVec);
-                side=max(length(X),length(Y));
-                cols=cols/side;
+                matVec = mat;
+                [rows,cols] = size(matVec);
+                side = max(length(X),length(Y));
+                cols = cols/side;
             end
-            ret=cell(rows,cols);
-
-            for ii=1:rows
-                for jj=1:cols
-                    ret{ii,jj}=diag(matVec(ii,(jj-1)*side+1:jj*side));
+            
+            ret = cell(rows,cols);
+            for ii = 1:rows
+                for jj = 1:cols
+                    ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side));
                 end
             end
-            ret=cell2mat(ret);
+            ret = cell2mat(ret);
         end
-
-
-        function [closure, penalty]=boundary_condition_char(obj,boundary)
-            params=obj.params;
-            X=obj.X; Y=obj.Y;
-            xi=obj.xi; eta=obj.eta;
-           
-
+        
+        %Characteristic boundary conditions
+        function [closure, penalty] = boundary_condition_char(obj,boundary)
+            params = obj.params;
+            X = obj.X;
+            Y = obj.Y;
+            xi = obj.xi;
+            eta = obj.eta;
+            
             switch boundary
                 case {'w','W','west'}
-                    e_=obj.e_w;
-                    mat=obj.Ahat;
-                    boundPos='l';
-                    Hi=obj.Hxii;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w));
-                     side=max(length(eta));
+                    e_ = obj.e_w;
+                    mat = obj.Ahat;
+                    boundPos = 'l';
+                    Hi = obj.Hxii;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w));
+                    side = max(length(eta));
                 case {'e','E','east'}
-                    e_=obj.e_e;
-                    mat=obj.Ahat;
-                    boundPos='r';
-                    Hi=obj.Hxii;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e));
-                     side=max(length(eta));
+                    e_ = obj.e_e;
+                    mat = obj.Ahat;
+                    boundPos = 'r';
+                    Hi = obj.Hxii;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e));
+                    side = max(length(eta));
                 case {'s','S','south'}
-                    e_=obj.e_s;
-                    mat=obj.Bhat;
-                    boundPos='l';
-                    Hi=obj.Hetai;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s));
-                     side=max(length(xi));
+                    e_ = obj.e_s;
+                    mat = obj.Bhat;
+                    boundPos = 'l';
+                    Hi = obj.Hetai;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s));
+                    side = max(length(xi));
                 case {'n','N','north'}
-                    e_=obj.e_n;
-                    mat=obj.Bhat;
-                    boundPos='r';
-                    Hi=obj.Hetai;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n));
-                    side=max(length(xi));
+                    e_ = obj.e_n;
+                    mat = obj.Bhat;
+                    boundPos = 'r';
+                    Hi = obj.Hetai;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n));
+                    side = max(length(xi));
             end
-
-            pos=signVec(1); zeroval=signVec(2); neg=signVec(3);
-
+            
+            pos = signVec(1);
+            zeroval = signVec(2);
+            neg = signVec(3);
+            
             switch boundPos
                 case {'l'}
-                    tau=sparse(obj.n*side,pos);
-                    Vi_plus=Vi(1:pos,:);
-                    tau(1:pos,:)=-abs(D(1:pos,1:pos));
-                    closure=Hi*e_*V*tau*Vi_plus*e_';
-                    penalty=-Hi*e_*V*tau*Vi_plus;
+                    tau = sparse(obj.n*side,pos);
+                    Vi_plus = Vi(1:pos,:);
+                    tau(1:pos,:) = -abs(D(1:pos,1:pos));
+                    closure = Hi*e_*V*tau*Vi_plus*e_';
+                    penalty = -Hi*e_*V*tau*Vi_plus;
                 case {'r'}
-                    tau=sparse(obj.n*side,neg);
-                    tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
-                    Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:);
-                    closure=Hi*e_*V*tau*Vi_minus*e_';
-                    penalty=-Hi*e_*V*tau*Vi_minus;
-            end
+                    tau = sparse(obj.n*side,neg);
+                    tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
+                    Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
+                    closure = Hi*e_*V*tau*Vi_minus*e_';
+                    penalty = -Hi*e_*V*tau*Vi_minus;
+            end  
         end
-
-
-        function [closure,penalty]=boundary_condition_general(obj,boundary,L)
-            params=obj.params;
-            X=obj.X; Y=obj.Y;
-            xi=obj.xi; eta=obj.eta;
-
+        
+        
+        % General boundary condition in the form Lu=g(x)
+        function [closure,penalty] = boundary_condition_general(obj,boundary,L)
+            params = obj.params;
+            X = obj.X;
+            Y = obj.Y;
+            xi = obj.xi;
+            eta = obj.eta;
+            
             switch boundary
                 case {'w','W','west'}
-                    e_=obj.e_w;
-                    mat=obj.Ahat;
-                    boundPos='l';
-                    Hi=obj.Hxii;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w));
-                   
-                    Ji_vec=diag(obj.Ji);
-                    Ji=diag(Ji_vec(obj.index_w));
-                    xi_x=Ji*obj.Y_eta(obj.index_w);
-                    xi_y=-Ji*obj.X_eta(obj.index_w);
-                    L=obj.evaluateCoefficientMatrix(L,xi_x,xi_y,[],[]);
-                    side=max(length(eta));
+                    e_ = obj.e_w;
+                    mat = obj.Ahat;
+                    boundPos = 'l';
+                    Hi = obj.Hxii;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w));
+                    
+                    Ji_vec = diag(obj.Ji);
+                    Ji = diag(Ji_vec(obj.index_w));
+                    xi_x = Ji*obj.Y_eta(obj.index_w);
+                    xi_y = -Ji*obj.X_eta(obj.index_w);
+                    L = obj.evaluateCoefficientMatrix(L,xi_x,xi_y,[],[]);
+                    side = max(length(eta));
                 case {'e','E','east'}
-                    e_=obj.e_e;
-                    mat=obj.Ahat;
-                    boundPos='r';
-                    Hi=obj.Hxii;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e));       
+                    e_ = obj.e_e;
+                    mat = obj.Ahat;
+                    boundPos = 'r';
+                    Hi = obj.Hxii;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e));
                     
-                    Ji_vec=diag(obj.Ji);
-                    Ji=diag(Ji_vec(obj.index_e));
-                    xi_x=Ji*obj.Y_eta(obj.index_e);
-                    xi_y=-Ji*obj.X_eta(obj.index_e);
-                    L=obj.evaluateCoefficientMatrix(L,-xi_x,-xi_y,[],[]);
-                    side=max(length(eta));
+                    Ji_vec = diag(obj.Ji);
+                    Ji = diag(Ji_vec(obj.index_e));
+                    xi_x = Ji*obj.Y_eta(obj.index_e);
+                    xi_y = -Ji*obj.X_eta(obj.index_e);
+                    L = obj.evaluateCoefficientMatrix(L,-xi_x,-xi_y,[],[]);
+                    side = max(length(eta));
                 case {'s','S','south'}
-                   e_=obj.e_s;
-                    mat=obj.Bhat;
-                    boundPos='l';
-                    Hi=obj.Hetai;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s));
+                    e_ = obj.e_s;
+                    mat = obj.Bhat;
+                    boundPos = 'l';
+                    Hi = obj.Hetai;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s));
                     
-                    Ji_vec=diag(obj.Ji);
-                    Ji=diag(Ji_vec(obj.index_s));
-                    eta_x=Ji*obj.Y_xi(obj.index_s);
-                    eta_y=-Ji*obj.X_xi(obj.index_s);
-                    L=obj.evaluateCoefficientMatrix(L,eta_x,eta_y,[],[]);
-                    side=max(length(xi));
+                    Ji_vec = diag(obj.Ji);
+                    Ji = diag(Ji_vec(obj.index_s));
+                    eta_x = Ji*obj.Y_xi(obj.index_s);
+                    eta_y = -Ji*obj.X_xi(obj.index_s);
+                    L = obj.evaluateCoefficientMatrix(L,eta_x,eta_y,[],[]);
+                    side = max(length(xi));
                 case {'n','N','north'}
-                   e_=obj.e_n;            
-
-                    mat=obj.Bhat;
-                    boundPos='r';
-                    Hi=obj.Hetai;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n));
-                   
-                    Ji_vec=diag(obj.Ji);
-                    Ji=diag(Ji_vec(obj.index_n));
-                    eta_x=Ji*obj.Y_xi(obj.index_n);
-                    eta_y=-Ji*obj.X_xi(obj.index_n);
-                    L=obj.evaluateCoefficientMatrix(L,-eta_x,-eta_y,[],[]);
-                
-                    side=max(length(xi));
+                    e_ = obj.e_n;
+                    mat = obj.Bhat;
+                    boundPos = 'r';
+                    Hi = obj.Hetai;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n));
                     
+                    Ji_vec = diag(obj.Ji);
+                    Ji = diag(Ji_vec(obj.index_n));
+                    eta_x = Ji*obj.Y_xi(obj.index_n);
+                    eta_y = -Ji*obj.X_xi(obj.index_n);
+                    L = obj.evaluateCoefficientMatrix(L,-eta_x,-eta_y,[],[]);
+                    side = max(length(xi));
             end
-
-            pos=signVec(1); zeroval=signVec(2); neg=signVec(3);
-
+            
+            pos = signVec(1);
+            zeroval = signVec(2);
+            neg = signVec(3);
+            
             switch boundPos
                 case {'l'}
-                    tau=sparse(obj.n*side,pos);
-                    Vi_plus=Vi(1:pos,:);
-                    Vi_minus=Vi(pos+1:obj.n*side,:);
-                    V_plus=V(:,1:pos);
-                    V_minus=V(:,(pos)+1:obj.n*side);
-
-                    tau(1:pos,:)=-abs(D(1:pos,1:pos));
-                    R=-inv(L*V_plus)*(L*V_minus);
-                    closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
-                    penalty=-Hi*e_*V*tau*inv(L*V_plus)*L;
+                    tau = sparse(obj.n*side,pos);
+                    Vi_plus = Vi(1:pos,:);
+                    Vi_minus = Vi(pos+1:obj.n*side,:);
+                    V_plus = V(:,1:pos);
+                    V_minus = V(:,(pos)+1:obj.n*side);
+                    
+                    tau(1:pos,:) = -abs(D(1:pos,1:pos));
+                    R = -inv(L*V_plus)*(L*V_minus);
+                    closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
+                    penalty = -Hi*e_*V*tau*inv(L*V_plus)*L;
                 case {'r'}
-                    tau=sparse(obj.n*side,neg);
-                    tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
-                    Vi_plus=Vi(1:pos,:);
-                    Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:);
-
-                    V_plus=V(:,1:pos);
-                    V_minus=V(:,(pos+zeroval)+1:obj.n*side);
-                    R=-inv(L*V_minus)*(L*V_plus);
-                    closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
-                    penalty=-Hi*e_*V*tau*inv(L*V_minus)*L;
+                    tau = sparse(obj.n*side,neg);
+                    tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
+                    Vi_plus = Vi(1:pos,:);
+                    Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
+                    
+                    V_plus = V(:,1:pos);
+                    V_minus = V(:,(pos+zeroval)+1:obj.n*side);
+                    R = -inv(L*V_minus)*(L*V_plus);
+                    closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
+                    penalty = -Hi*e_*V*tau*inv(L*V_minus)*L;
             end
         end
-
-        function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,x_,y_)
-            params=obj.params;
-            syms xs ys 
-            if(sum(abs(x_))~=0)
+                        
+        % Function that diagonalizes a symbolic matrix A as A=V*D*Vi
+        % D         is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign
+        %                                    [d+       ]
+        %                               D =  [   d0    ]
+        %                                    [       d-]
+        % signVec   is a vector specifying the number of possitive, zero and negative eigenvalues of D
+        function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y,x_,y_)
+            params = obj.params;
+            syms xs ys
+            if(sum(abs(x_)) ~= 0)
                 syms xs_
             else
-                xs_=0;
+                xs_ = 0;
             end
             
-            if(sum(abs(y_))~=0)
-            syms ys_;
+            if(sum(abs(y_))~= 0)
+                syms ys_;
             else
-                ys_=0;
+                ys_ = 0;
             end
             
-            [V, D]=eig(mat(params,xs,ys,xs_,ys_));
-            Vi=inv(V);
+            [V, D] = eig(mat(params,xs,ys,xs_,ys_));
+            Vi = inv(V);
             syms xs ys xs_ ys_
             
-            xs=x; 
-            ys=y;
-            xs_=x_;
-            ys_=y_;
-
-            side=max(length(x),length(y));
-            Dret=zeros(obj.n,side*obj.n);
-            Vret=zeros(obj.n,side*obj.n);
-            Viret=zeros(obj.n,side*obj.n);
-            for ii=1:obj.n
-                for jj=1:obj.n
-                    Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii));
-                    Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii));
-                    Viret(jj,(ii-1)*side+1:side*ii)=eval(Vi(jj,ii));
+            xs = x;
+            ys = y;
+            xs_ = x_;
+            ys_ = y_;
+            
+            side = max(length(x),length(y));
+            Dret = zeros(obj.n,side*obj.n);
+            Vret = zeros(obj.n,side*obj.n);
+            Viret = zeros(obj.n,side*obj.n);
+            for ii = 1:obj.n
+                for jj = 1:obj.n
+                    Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii));
+                    Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii));
+                    Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii));
                 end
             end
-
-            D=sparse(Dret);
-            V=sparse(Vret);
-            Vi=sparse(Viret);
-            V=obj.evaluateCoefficientMatrix(V,x,y,x_,y_);
-            D=obj.evaluateCoefficientMatrix(D,x,y,x_,y_);    
-            Vi=obj.evaluateCoefficientMatrix(Vi,x,y,x_,y_);
-            DD=diag(D);
+            
+            D = sparse(Dret);
+            V = sparse(Vret);
+            Vi = sparse(Viret);
+            V = obj.evaluateCoefficientMatrix(V,x,y,x_,y_);
+            D = obj.evaluateCoefficientMatrix(D,x,y,x_,y_);
+            Vi = obj.evaluateCoefficientMatrix(Vi,x,y,x_,y_);
+            DD = diag(D);
             
-            poseig=(DD>0);
-            zeroeig=(DD==0);
-            negeig=(DD<0);
+            poseig = (DD>0);
+            zeroeig = (DD==0);
+            negeig = (DD<0);
             
-            D=diag([DD(poseig); DD(zeroeig); DD(negeig)]);
-            V=[V(:,poseig) V(:,zeroeig) V(:,negeig)];            
-            Vi=[Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];
-            signVec=[sum(poseig),sum(zeroeig),sum(negeig)];
+            D = diag([DD(poseig); DD(zeroeig); DD(negeig)]);
+            V = [V(:,poseig) V(:,zeroeig) V(:,negeig)];
+            Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];
+            signVec = [sum(poseig),sum(zeroeig),sum(negeig)];
         end
     end
 end
\ No newline at end of file
--- a/+scheme/Hypsyst3d.m	Wed Jan 25 15:37:12 2017 +0100
+++ b/+scheme/Hypsyst3d.m	Thu Jan 26 09:57:24 2017 +0100
@@ -1,7 +1,7 @@
 classdef Hypsyst3d < scheme.Scheme
     properties
         m % Number of points in each direction, possibly a vector
-        n %size of system
+        n % Size of system
         h % Grid spacing
         x, y, z % Grid
         X, Y, Z% Values of x and y for each grid point
@@ -9,20 +9,20 @@
         order % Order accuracy for the approximation
         
         D % non-stabalized scheme operator
-        A, B, C, E
+        A, B, C, E % Symbolic coefficient matrices
         Aevaluated,Bevaluated,Cevaluated, Eevaluated
         
         H % Discrete norm
-        % Norms in the x, y and z directions
-        Hx, Hy, Hz
+        Hx, Hy, Hz  % Norms in the x, y and z directions
         Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
         I_x,I_y, I_z, I_N
         e_w, e_e, e_s, e_n, e_b, e_t
-        params %parameters for the coeficient matrice
+        params % Parameters for the coeficient matrice
     end
     
     
     methods
+        % Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Cu_z-Eu
         function obj = Hypsyst3d(m, lim, order, A, B,C, E, params,operator)
             default_arg('E', [])
             default_arg('operatpr',[])
@@ -40,7 +40,7 @@
             obj.E = E;
             m_x = m(1);
             m_y = m(2);
-            m_z=m(3);
+            m_z = m(3);
             obj.params = params;
             
             switch operator
@@ -58,16 +58,14 @@
             obj.y = ops_y.x;
             obj.z = ops_z.x;
             
-            obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1));%% Que pasa?
+            obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1));
             obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1));
             obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z);
             
             obj.Yx = kr(obj.y,ones(m_z,1));
             obj.Zx = kr(ones(m_y,1),obj.z);
-            
             obj.Xy = kr(obj.x,ones(m_z,1));
             obj.Zy = kr(ones(m_x,1),obj.z);
-            
             obj.Xz = kr(obj.x,ones(m_y,1));
             obj.Yz = kr(ones(m_z,1),obj.y);
             
@@ -85,7 +83,7 @@
             obj.I_y = I_y;
             I_z = speye(m_z);
             obj.I_z = I_z;
-            I_N=kr(I_n,I_x,I_y,I_z);
+            I_N = kr(I_n,I_x,I_y,I_z);
             
             obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z);
             obj.Hx = ops_x.H;
@@ -115,40 +113,41 @@
                     Am = (obj.Aevaluated-alphaA*I_N)/2;
                     Dpx = kr(I_n, ops_x.Dp, I_y,I_z);
                     Dmx = kr(I_n, ops_x.Dm, I_y,I_z);
-                    obj.D=-Am*Dpx;
-                    temp=Ap*Dmx;
-                    obj.D=obj.D-temp;
+                    obj.D = -Am*Dpx;
+                    temp = Ap*Dmx;
+                    obj.D = obj.D-temp;
                     clear Ap Am Dpx Dmx
                     
                     Bp = (obj.Bevaluated+alphaB*I_N)/2;
                     Bm = (obj.Bevaluated-alphaB*I_N)/2;
                     Dpy = kr(I_n, I_x, ops_y.Dp,I_z);
                     Dmy = kr(I_n, I_x, ops_y.Dm,I_z);
-                    temp=Bm*Dpy;
-                    obj.D=obj.D-temp;
-                    temp=Bp*Dmy;
-                    obj.D=obj.D-temp;
+                    temp = Bm*Dpy;
+                    obj.D = obj.D-temp;
+                    temp = Bp*Dmy;
+                    obj.D = obj.D-temp;
                     clear Bp Bm Dpy Dmy
                     
                     
                     Cp = (obj.Cevaluated+alphaC*I_N)/2;
-                    Cm = (obj.Cevaluated-alphaC*I_N)/2;                  
+                    Cm = (obj.Cevaluated-alphaC*I_N)/2;
                     Dpz = kr(I_n, I_x, I_y,ops_z.Dp);
                     Dmz = kr(I_n, I_x, I_y,ops_z.Dm);
                     
-                    temp=Cm*Dpz;
-                    obj.D=obj.D-temp;
-                    temp=Cp*Dmz;
-                    obj.D=obj.D-temp;
+                    temp = Cm*Dpz;
+                    obj.D = obj.D-temp;
+                    temp = Cp*Dmz;
+                    obj.D = obj.D-temp;
                     clear Cp Cm Dpz Dmz
+                    obj.D = obj.D-obj.Eevaluated;
                     
-                    obj.D=obj.D-obj.Eevaluated;
-                    
-                otherwise
+                case 'standard'
                     D1_x = kr(I_n, ops_x.D1, I_y,I_z);
                     D1_y = kr(I_n, I_x, ops_y.D1,I_z);
                     D1_z = kr(I_n, I_x, I_y,ops_z.D1);
-                    obj.D=-obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated;
+                    obj.D = -obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated;
+                otherwise
+                    error('Opperator not supported');
             end
         end
         
@@ -159,8 +158,7 @@
         %       data                is a function returning the data that should be applied at the boundary.
         function [closure, penalty] = boundary_condition(obj,boundary,type,L)
             default_arg('type','char');
-            BM=boundary_matrices(obj,boundary);
-            
+            BM = boundary_matrices(obj,boundary);
             switch type
                 case{'c','char'}
                     [closure,penalty] = boundary_condition_char(obj,BM);
@@ -185,76 +183,74 @@
             if isa(mat,'function_handle')
                 [rows,cols] = size(mat(params,0,0,0));
                 matVec = mat(params,X',Y',Z');
-                matVec=sparse(matVec);
+                matVec = sparse(matVec);
             else
                 matVec = mat;
-                [rows,cols]=size(matVec);
-                side=max(length(X),length(Y));
-                cols=cols/side;
+                [rows,cols] = size(matVec);
+                side = max(length(X),length(Y));
+                cols = cols/side;
             end
-            ret=cell(rows,cols);
             
-            for ii=1:rows
-                for jj=1:cols
-                    ret{ii,jj}=diag(matVec(ii,(jj-1)*side+1:jj*side));
+            ret = cell(rows,cols);
+            for ii = 1:rows
+                for jj = 1:cols
+                    ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side));
                 end
             end
-            ret=cell2mat(ret);
+            ret = cell2mat(ret);
         end
         
-        
-        function [BM]=boundary_matrices(obj,boundary)
-            params=obj.params;
+        function [BM] = boundary_matrices(obj,boundary)
+            params = obj.params;
             
             switch boundary
                 case {'w','W','west'}
-                    BM.e_=obj.e_w;
-                    mat=obj.A;
-                    BM.boundpos='l';
-                    BM.Hi=obj.Hxi;
-                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(1),obj.Yx,obj.Zx);
-                    BM.side=length(obj.Yx);
+                    BM.e_ = obj.e_w;
+                    mat = obj.A;
+                    BM.boundpos = 'l';
+                    BM.Hi = obj.Hxi;
+                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(1),obj.Yx,obj.Zx);
+                    BM.side = length(obj.Yx);
                 case {'e','E','east'}
-                    BM.e_=obj.e_e;
-                    mat=obj.A;
-                    BM.boundpos='r';
-                    BM.Hi=obj.Hxi;
-                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(end),obj.Yx,obj.Zx);
-                    BM.side=length(obj.Yx);
+                    BM.e_ = obj.e_e;
+                    mat = obj.A;
+                    BM.boundpos = 'r';
+                    BM.Hi = obj.Hxi;
+                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(end),obj.Yx,obj.Zx);
+                    BM.side = length(obj.Yx);
                 case {'s','S','south'}
-                    BM.e_=obj.e_s;
-                    mat=obj.B;
-                    BM.boundpos='l';
-                    BM.Hi=obj.Hyi;
-                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xy,obj.Y(1),obj.Zy);
-                    BM.side=length(obj.Xy);
+                    BM.e_ = obj.e_s;
+                    mat = obj.B;
+                    BM.boundpos = 'l';
+                    BM.Hi = obj.Hyi;
+                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xy,obj.Y(1),obj.Zy);
+                    BM.side = length(obj.Xy);
                 case {'n','N','north'}
-                    BM.e_=obj.e_n;
-                    mat=obj.B;
-                    BM.boundpos='r';
-                    BM.Hi=obj.Hyi;
-                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xy,obj.Y(end),obj.Zy);
-                    BM.side=length(obj.Xy);
+                    BM.e_ = obj.e_n;
+                    mat = obj.B;
+                    BM.boundpos = 'r';
+                    BM.Hi = obj.Hyi;
+                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xy,obj.Y(end),obj.Zy);
+                    BM.side = length(obj.Xy);
                 case{'b','B','Bottom'}
-                    BM.e_=obj.e_b;
-                    mat=obj.C;
-                    BM.boundpos='l';
-                    BM.Hi=obj.Hzi;
-                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(1));
-                    BM.side=length(obj.Xz);
+                    BM.e_ = obj.e_b;
+                    mat = obj.C;
+                    BM.boundpos = 'l';
+                    BM.Hi = obj.Hzi;
+                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(1));
+                    BM.side = length(obj.Xz);
                 case{'t','T','Top'}
-                    BM.e_=obj.e_t;
-                    mat=obj.C;
-                    BM.boundpos='r';
-                    BM.Hi=obj.Hzi;
-                    [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(end));
-                    BM.side=length(obj.Xz);
+                    BM.e_ = obj.e_t;
+                    mat = obj.C;
+                    BM.boundpos = 'r';
+                    BM.Hi = obj.Hzi;
+                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(end));
+                    BM.side = length(obj.Xz);
             end
-            
-            BM.pos=signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3);
+            BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3);
         end
         
-        
+        % Characteristic bouyndary consitions
         function [closure, penalty]=boundary_condition_char(obj,BM)
             side = BM.side;
             pos = BM.pos;
@@ -262,9 +258,9 @@
             zeroval=BM.zeroval;
             V = BM.V;
             Vi = BM.Vi;
-            Hi=BM.Hi;
-            D=BM.D;
-            e_=BM.e_;
+            Hi = BM.Hi;
+            D = BM.D;
+            e_ = BM.e_;
             
             switch BM.boundpos
                 case {'l'}
@@ -282,17 +278,18 @@
             end
         end
         
-        
-        function [closure,penalty]=boundary_condition_general(obj,BM,boundary,L)
+        % General boundary condition in the form Lu=g(x)
+        function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L)           
             side = BM.side;
             pos = BM.pos;
             neg = BM.neg;
             zeroval=BM.zeroval;
             V = BM.V;
             Vi = BM.Vi;
-            Hi=BM.Hi;
-            D=BM.D;
-            e_=BM.e_;
+            Hi = BM.Hi;
+            D = BM.D;
+            e_ = BM.e_;
+            
             switch boundary
                 case {'w','W','west'}
                     L = obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx);
@@ -301,7 +298,7 @@
                 case {'s','S','south'}
                     L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy);
                 case {'n','N','north'}
-                    L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy);
+                    L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy);% General boundary condition in the form Lu=g(x)
                 case {'b','B','bottom'}
                     L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1));
                 case {'t','T','top'}
@@ -334,7 +331,12 @@
             end
         end
         
-        
+        % Function that diagonalizes a symbolic matrix A as A=V*D*Vi
+        % D         is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign
+        %                                    [d+       ]
+        %                               D =  [   d0    ]
+        %                                    [       d-]
+        % signVec   is a vector specifying the number of possitive, zero and negative eigenvalues of D
         function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z)
             params = obj.params;
             syms xs ys zs
@@ -349,6 +351,7 @@
             Dret = zeros(obj.n,side*obj.n);
             Vret = zeros(obj.n,side*obj.n);
             Viret= zeros(obj.n,side*obj.n);
+           
             for ii=1:obj.n
                 for jj=1:obj.n
                     Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii));
--- a/+scheme/Hypsyst3dCurve.m	Wed Jan 25 15:37:12 2017 +0100
+++ b/+scheme/Hypsyst3dCurve.m	Thu Jan 26 09:57:24 2017 +0100
@@ -9,21 +9,17 @@
         xi,eta,zeta
         Xi, Eta, Zeta
         
-        Eta_xi, Zeta_xi, Xi_eta, Zeta_eta, Xi_zeta, Eta_zeta
-        
-        X_xi, X_eta, X_zeta,Y_xi,Y_eta,Y_zeta,Z_xi,Z_eta,Z_zeta
-        
-        
-        metric_terms
+        Eta_xi, Zeta_xi, Xi_eta, Zeta_eta, Xi_zeta, Eta_zeta    % Metric terms
+        X_xi, X_eta, X_zeta,Y_xi,Y_eta,Y_zeta,Z_xi,Z_eta,Z_zeta % Metric terms
         
         order % Order accuracy for the approximation
         
         D % non-stabalized scheme operator
-        Aevaluated, Bevaluated, Cevaluated, Eevaluated
-        Ahat, Bhat, Chat, E
-        A,B,C
+        Aevaluated, Bevaluated, Cevaluated, Eevaluated % Numeric Coeffiecient matrices
+        Ahat, Bhat, Chat  % Symbolic Transformed Coefficient matrices
+        A, B, C, E % Symbolic coeffiecient matrices
         
-        J, Ji
+        J, Ji % JAcobian and inverse Jacobian
         
         H % Discrete norm
         % Norms in the x, y and z directions
@@ -73,7 +69,7 @@
             obj.eta = ops_eta.x;
             obj.zeta = ops_zeta.x;
             
-            obj.Xi = kr(obj.xi,ones(m_eta,1),ones(m_zeta,1));%% Que pasa?
+            obj.Xi = kr(obj.xi,ones(m_eta,1),ones(m_zeta,1));
             obj.Eta = kr(ones(m_xi,1),obj.eta,ones(m_zeta,1));
             obj.Zeta = kr(ones(m_xi,1),ones(m_eta,1),obj.zeta);
             
@@ -127,7 +123,7 @@
             obj.Z_xi = D1_xi*Z;
             obj.Z_eta = D1_eta*Z;
             obj.Z_zeta = D1_zeta*Z;
-              
+            
             obj.Ahat = @transform_coefficient_matrix;
             obj.Bhat = @transform_coefficient_matrix;
             obj.Chat = @transform_coefficient_matrix;
@@ -146,45 +142,44 @@
                     
                     Ap = (obj.Aevaluated+alphaA*I_N)/2;
                     Dmxi = kr(I_n, ops_xi.Dm, I_eta,I_zeta);
-                    diffSum=-Ap*Dmxi;
+                    diffSum = -Ap*Dmxi;
                     clear Ap Dmxi
                     
                     Am = (obj.Aevaluated-alphaA*I_N)/2;
-                    obj.Aevaluated=[];
+                    
+                    obj.Aevaluated = [];
                     Dpxi = kr(I_n, ops_xi.Dp, I_eta,I_zeta);
-                    temp=Am*Dpxi;
-                    diffSum=diffSum-temp;
+                    temp = Am*Dpxi;
+                    diffSum = diffSum-temp;
                     clear Am Dpxi
                     
                     Bp = (obj.Bevaluated+alphaB*I_N)/2;
                     Dmeta = kr(I_n, I_xi, ops_eta.Dm,I_zeta);
-                    temp=Bp*Dmeta;
-                    diffSum=diffSum-temp;
+                    temp = Bp*Dmeta;
+                    diffSum = diffSum-temp;
                     clear Bp Dmeta
                     
                     Bm = (obj.Bevaluated-alphaB*I_N)/2;
-                    obj.Bevaluated=[];
+                    obj.Bevaluated = [];
                     Dpeta = kr(I_n, I_xi, ops_eta.Dp,I_zeta);
-                    temp=Bm*Dpeta;
-                    diffSum=diffSum-temp;
+                    temp = Bm*Dpeta;
+                    diffSum = diffSum-temp;
                     clear Bm Dpeta
                     
-                    
                     Cp = (obj.Cevaluated+alphaC*I_N)/2;
                     Dmzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dm);
-                    temp=Cp*Dmzeta;
-                    diffSum=diffSum-temp;
+                    temp = Cp*Dmzeta;
+                    diffSum = diffSum-temp;
                     clear Cp Dmzeta
                     
                     Cm = (obj.Cevaluated-alphaC*I_N)/2;
                     clear I_N
-                    obj.Cevaluated=[];
+                    obj.Cevaluated = [];
                     Dpzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dp);
-                    temp=Cm*Dpzeta;
-                    diffSum=diffSum-temp;
+                    temp = Cm*Dpzeta;
+                    diffSum = diffSum-temp;
                     clear Cm Dpzeta temp
                     
-                    
                     obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta...
                         +obj.X_zeta.*obj.Y_xi.*obj.Z_eta...
                         +obj.X_eta.*obj.Y_zeta.*obj.Z_xi...
@@ -196,10 +191,11 @@
                     obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]);
                     
                     obj.D = obj.Ji*diffSum-obj.Eevaluated;
-                otherwise
-                     D1_xi=kr(I_n,D1_xi);
-            D1_eta=kr(I_n,D1_eta);
-            D1_zeta=kr(I_n,D1_zeta);
+                    
+                case 'standard'
+                    D1_xi = kr(I_n,D1_xi);
+                    D1_eta = kr(I_n,D1_eta);
+                    D1_zeta = kr(I_n,D1_zeta);
                     
                     obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta...
                         +obj.X_zeta.*obj.Y_xi.*obj.Z_eta...
@@ -212,7 +208,10 @@
                     obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]);
                     
                     obj.D = obj.Ji*(-obj.Aevaluated*D1_xi-obj.Bevaluated*D1_eta -obj.Cevaluated*D1_zeta)-obj.Eevaluated;
+                otherwise
+                    error('Operator not supported')
             end
+            
             obj.Hxii = kr(I_n, ops_xi.HI, I_eta,I_zeta);
             obj.Hetai = kr(I_n, I_xi, ops_eta.HI,I_zeta);
             obj.Hzetai = kr(I_n, I_xi,I_eta, ops_zeta.HI);
@@ -231,15 +230,12 @@
             obj.e_b = kr(I_n, I_xi, I_eta, ops_zeta.e_l);
             obj.e_t = kr(I_n, I_xi, I_eta, ops_zeta.e_r);
             
-            
-            
             obj.Eta_xi = kr(obj.eta,ones(m_xi,1));
             obj.Zeta_xi = kr(ones(m_eta,1),obj.zeta);
             obj.Xi_eta = kr(obj.xi,ones(m_zeta,1));
             obj.Zeta_eta = kr(ones(m_xi,1),obj.zeta);
             obj.Xi_zeta = kr(obj.xi,ones(m_eta,1));
-            obj.Eta_zeta = kr(ones(m_zeta,1),obj.eta);
-            
+            obj.Eta_zeta = kr(ones(m_zeta,1),obj.eta);           
         end
         
         function [ret] = transform_coefficient_matrix(obj,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2)
@@ -276,6 +272,7 @@
             N = obj.m;
         end
         
+        % Evaluates the symbolic Coeffiecient matrix mat
         function [ret] = evaluateCoefficientMatrix(obj,mat, X, Y, Z , x_1 , x_2 , y_1 , y_2 , z_1 , z_2)
             params = obj.params;
             side = max(length(X),length(Y));
@@ -295,21 +292,17 @@
                 side = max(length(X),length(Y));
                 cols = cols/side;
             end
-            matVec(abs(matVec)<10^(-10))=0;
+            matVec(abs(matVec)<10^(-10)) = 0;
             ret = cell(rows,cols);
             
-            
-            for ii=1:rows
-                for jj=1:cols
+            for ii = 1:rows
+                for jj = 1:cols
                     ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side));
                 end
             end
-            
             ret = cell2mat(ret);
-            
         end
         
-        
         function [BM] = boundary_matrices(obj,boundary)
             params = obj.params;
             BM.boundary = boundary;
@@ -393,8 +386,8 @@
             BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3);
         end
         
-        
-        function [closure, penalty]=boundary_condition_char(obj,BM)
+        % Characteristic boundary condition
+        function [closure, penalty] = boundary_condition_char(obj,BM)
             side = BM.side;
             pos = BM.pos;
             neg = BM.neg;
@@ -405,7 +398,6 @@
             D = BM.D;
             e_ = BM.e_;
             
-            
             switch BM.boundpos
                 case {'l'}
                     tau = sparse(obj.n*side,pos);
@@ -422,8 +414,8 @@
             end
         end
         
-        
-        function [closure,penalty]=boundary_condition_general(obj,BM,boundary,L)
+        % General boundary condition in the form Lu=g(x)
+        function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L)
             side = BM.side;
             pos = BM.pos;
             neg = BM.neg;
@@ -472,7 +464,12 @@
             end
         end
         
-        
+        % Function that diagonalizes a symbolic matrix A as A=V*D*Vi
+        % D         is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign
+        %                                    [d+       ]
+        %                               D =  [   d0    ]
+        %                                    [       d-]
+        % signVec   is a vector specifying the number of possitive, zero and negative eigenvalues of D
         function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2)
             params = obj.params;
             eps = 10^(-10);
@@ -516,7 +513,6 @@
             syms xs ys zs
             [V, D] = eig(mat(obj,xs,ys,zs,x_1s,x_2s,y_1s,y_2s,z_1s,z_2s));
             Vi = inv(V);
-            %    syms x_1s x_2s y_1s y_2s z_1s z_2s
             xs = x;
             ys = y;
             zs = z;
--- a/+scheme/Wave2dCurve.m	Wed Jan 25 15:37:12 2017 +0100
+++ b/+scheme/Wave2dCurve.m	Thu Jan 26 09:57:24 2017 +0100
@@ -131,7 +131,7 @@
             obj.du_s = (obj.e_s'*Du)';
             obj.dv_s = kr(I_u,d1_l_v);
             obj.du_n = (obj.e_n'*Du)';
-            obj.dv_n = kr(I_u,d1_r_v);
+            obj.dv_n = kr(I_u,d1_r_v);General boundary conditions
 
             obj.m = m;
             obj.h = [h_u h_v];