Mercurial > repos > public > sbplib
changeset 566:9c98a0526afc feature/grids/laplace_refactor
Switch implementation of boundary and interface to SBP notation
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 01 Sep 2017 10:43:43 +0200 |
parents | f4b0d0e84305 |
children | 33b962620e24 |
files | +scheme/LaplaceCurvilinear.m |
diffstat | 1 files changed, 32 insertions(+), 57 deletions(-) [+] |
line wrap: on
line diff
--- a/+scheme/LaplaceCurvilinear.m Wed Aug 30 17:42:22 2017 +0200 +++ b/+scheme/LaplaceCurvilinear.m Fri Sep 01 10:43:43 2017 +0200 @@ -190,10 +190,10 @@ s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2); s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2); - obj.d_w = -1*(a11_w*obj.du_w' + a12_w*obj.dv_w')'; - obj.d_e = (a11_e*obj.du_e' + a12_e*obj.dv_e')'; - obj.d_s = -1*(a22_s*obj.dv_s' + a12_s*obj.du_s')'; - obj.d_n = (a22_n*obj.dv_n' + a12_n*obj.du_n')'; + obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))'; + obj.d_e = (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))'; + obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))'; + obj.d_n = (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))'; obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; @@ -233,48 +233,34 @@ default_arg('type','neumann'); default_arg('parameter', []); - [e, d, s, gamm, halfnorm_inv , ~, ~, ~, scale_factor] = obj.get_boundary_ops(boundary); + [e, d, s, gamm, H_b, ~] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} tuning = 1.2; % tuning = 20.2; - [e, F, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t] = obj.get_boundary_ops(boundary); - u = obj; - - b1 = gamm*u.lambda./u.a11.^2; - b2 = gamm*u.lambda./u.a22.^2; + b1 = gamm*obj.lambda./obj.a11.^2; + b2 = gamm*obj.lambda./obj.a22.^2; - tau = -1./b1 - 1./b2; - tau = tuning * spdiag(tau); - sig1 = 1; + tau1 = tuning * spdiag(-1./b1 - 1./b2); + tau2 = 1; - penalty_parameter_1 = halfnorm_inv_n*(tau + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e; + tau = (tau1*e + tau2*d)*H_b; - closure = obj.Ji*obj.a * penalty_parameter_1*e'; - penalty = -obj.Ji*obj.a * penalty_parameter_1; + closure = obj.a*obj.Hi*tau*e'; + penalty = -obj.a*obj.Hi*tau; % Neumann boundary condition case {'N','n','neumann'} tau1 = -1; tau2 = 0; - tau = obj.a*obj.Ji*(tau1*e + tau2*d); - - closure = halfnorm_inv*tau*d'; - penalty = -halfnorm_inv*tau; + tau = (tau1*e + tau2*d)*H_b; - % Characteristic boundary condition - case {'characteristic', 'char', 'c'} - default_arg('parameter', 1); - beta = parameter; + closure = obj.a*obj.Hi*tau*d'; + penalty = -obj.a*obj.Hi*tau; - tau = -obj.a * 1/beta*obj.Ji*e; - - closure{1} = halfnorm_inv*tau*spdiag(scale_factor)*e'; - closure{2} = halfnorm_inv*tau*beta*d'; - penalty = -halfnorm_inv*tau; % Unknown, boundary condition otherwise @@ -287,8 +273,8 @@ % v denotes the solution in the neighbour domain tuning = 1.2; % tuning = 20.2; - [e_u, F_u, s_u, gamm_u, halfnorm_inv_u_n, halfnorm_inv_u_t, halfnorm_u_t, I_u] = obj.get_boundary_ops(boundary); - [e_v, F_v, s_v, gamm_v, halfnorm_inv_v_n, halfnorm_inv_v_t, halfnorm_v_t, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + [e_u, d_u, s_u, gamm_u, H_b_u, I_u] = obj.get_boundary_ops(boundary); + [e_v, d_v, s_v, gamm_v, H_b_v, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); u = obj; v = neighbour_scheme; @@ -298,24 +284,25 @@ b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; - tau = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); - tau = tuning * spdiag(tau); - sig1 = 1/2; - sig2 = -1/2; + tau1 = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); + tau1 = tuning * spdiag(tau1); + tau2 = 1/2; - penalty_parameter_1 = halfnorm_inv_u_n*(e_u*tau + sig1*halfnorm_inv_u_t*F_u*e_u'*halfnorm_u_t*e_u); - penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u; + sig1 = -1/2; + sig2 = 0; + tau = (e_u*tau1 + tau2*d_u)*H_b_u; + sig = (sig1*e_u + sig2*d_u)*H_b_u; - closure = obj.Ji*obj.a * ( penalty_parameter_1*e_u' + penalty_parameter_2*F_u'); - penalty = obj.Ji*obj.a * (-penalty_parameter_1*e_v' + penalty_parameter_2*F_v'); + closure = obj.a*obj.Hi*( tau*e_u' + sig*d_u'); + penalty = obj.a*obj.Hi*(-tau*e_v' + sig*d_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary % % I -- the indecies of the boundary points in the grid matrix - function [e, d, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I, scale_factor] = get_boundary_ops(obj, boundary) + function [e, d, s, gamm, H_b, I] = get_boundary_ops(obj, boundary) % gridMatrix = zeros(obj.m(2),obj.m(1)); % gridMatrix(:) = 1:numel(gridMatrix); @@ -326,45 +313,35 @@ case 'w' e = obj.e_w; d = obj.d_w; + H_b = obj.H_w; s = -1; - I = ind(1,:); - scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); case 'e' e = obj.e_e; d = obj.d_e; + H_b = obj.H_e; s = 1; - I = ind(end,:); - scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); case 's' e = obj.e_s; d = obj.d_s; + H_b = obj.H_s; s = -1; - I = ind(:,1)'; - scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); case 'n' e = obj.e_n; d = obj.d_n; + H_b = obj.H_n; s = 1; - I = ind(:,end)'; - scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','e'} - halfnorm_inv_n = obj.Hiu; - halfnorm_inv_t = obj.Hiv; - halfnorm_t = obj.Hv; gamm = obj.gamm_u; case {'s','n'} - halfnorm_inv_n = obj.Hiv; - halfnorm_inv_t = obj.Hiu; - halfnorm_t = obj.Hu; gamm = obj.gamm_v; end end @@ -372,7 +349,5 @@ function N = size(obj) N = prod(obj.m); end - - end -end \ No newline at end of file +end