changeset 1071:92cb03e64ca4 feature/grids/LaplaceSquared

Merge with default
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 20 Sep 2018 12:05:20 +0200
parents f6b3af6febf3 (current diff) 006defd0247b (diff)
children 6468a5f6ec79
files +multiblock/multiblockgrid.m +multiblock/stitchSchemes.m
diffstat 26 files changed, 2298 insertions(+), 204 deletions(-) [+]
line wrap: on
line diff
--- a/+grid/Cartesian.m	Tue Jul 24 21:08:08 2018 -0700
+++ b/+grid/Cartesian.m	Thu Sep 20 12:05:20 2018 +0200
@@ -5,6 +5,7 @@
         m % Number of points in each direction
         x % Cell array of vectors with node placement for each dimension.
         h % Spacing/Scaling
+        lim % Cell array of left and right boundaries for each dimension.
     end
 
     % General d dimensional grid with n points
@@ -27,6 +28,11 @@
             end
 
             obj.h = [];
+
+            obj.lim = cell(1,obj.d);
+            for i = 1:obj.d
+                obj.lim{i} = {obj.x{i}(1), obj.x{i}(end)};
+            end
         end
         % n returns the number of points in the grid
         function o = N(obj)
--- a/+grid/evalOn.m	Tue Jul 24 21:08:08 2018 -0700
+++ b/+grid/evalOn.m	Thu Sep 20 12:05:20 2018 +0200
@@ -13,18 +13,18 @@
         return
     end
     % func should now be a function_handle
-    assert(g.D == nargin(func),'grid:evalOn:WrongNumberOfInputs', 'The number of inputs of the function must match the dimension of the domain.')
+    assert(g.D == nargin(func) || nargin(func) < 0,'grid:evalOn:WrongNumberOfInputs', 'The number of inputs of the function must match the dimension of the domain.')
 
     x = num2cell(g.points(),1);
-    k = numberOfComponents(func);
+    k = numberOfComponents(func, g.D);
 
     gf = func(x{:});
     gf = reorderComponents(gf, k);
 end
 
 % Find the number of vector components of func
-function k = numberOfComponents(func)
-    x0 = num2cell(ones(1,nargin(func)));
+function k = numberOfComponents(func, dim)
+    x0 = num2cell(ones(1, dim));
     f0 = func(x0{:});
     assert(size(f0,2) == 1, 'grid:evalOn:VectorValuedWrongDim', 'A vector valued function must be given as a column vector');
     k = length(f0);
--- a/+multiblock/DiffOp.m	Tue Jul 24 21:08:08 2018 -0700
+++ b/+multiblock/DiffOp.m	Thu Sep 20 12:05:20 2018 +0200
@@ -53,7 +53,11 @@
 
 
             % Build the differentiation matrix
-            obj.blockmatrixDiv = {g.Ns, g.Ns};
+            Ns = zeros(nBlocks,1);
+            for i = 1:nBlocks
+                Ns(i) = length(obj.diffOps{i}.D);
+            end
+            obj.blockmatrixDiv = {Ns, Ns};
             D = blockmatrix.zero(obj.blockmatrixDiv);
             for i = 1:nBlocks
                 D{i,i} = obj.diffOps{i}.D;
@@ -117,7 +121,7 @@
 
         function ops = splitOp(obj, op)
             % Splits a matrix operator into a cell-matrix of matrix operators for
-            % each g.
+            % each grid.
             ops = sparse2cell(op, obj.NNN);
         end
 
--- a/+multiblock/Grid.m	Tue Jul 24 21:08:08 2018 -0700
+++ b/+multiblock/Grid.m	Thu Sep 20 12:05:20 2018 +0200
@@ -77,7 +77,7 @@
             % Collect number of points in each block
             N = zeros(1,nBlocks);
             for i = 1:nBlocks
-                N(i) = obj.grids{i}.N();
+                N(i) = obj.grids{i}.N()*nComponents;
             end
 
             gfs = blockmatrix.fromMatrix(gf, {N,1});
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+multiblock/evalOn.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,27 @@
+% Evaluate different function handle for each block in a multiblock.Grid
+% Function handles may optionaly take a time argument
+% f -- cell array of function handles
+%       f{i} = f_i(t,x,y,...)
+% t -- optional time point. If not specified, it is assumed that the functions take only spatial arguments.
+function gf = evalOn(g, f, t)
+    assertType(g, 'multiblock.Grid');
+    assertType(f, 'cell');
+
+    default_arg('t', []);
+
+    grids = g.grids;
+    nBlocks = length(grids);
+    gf = cell(nBlocks, 1);
+
+    if isempty(t)
+        for i = 1:nBlocks
+            gf{i} = grid.evalOn(grids{i}, f{i});
+        end
+    else
+        for i = 1:nBlocks
+            gf{i} = grid.evalOn(grids{i}, @(varargin)f{i}(t,varargin{:}));
+        end
+    end
+
+    gf = blockmatrix.toMatrix(gf);
+end
--- a/+multiblock/multiblockgrid.m	Tue Jul 24 21:08:08 2018 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,70 +0,0 @@
-% Creates a multi block square grid with defined boundary conditions.
-%   x,y defines the grid lines. Rember to think of the indexing as a matrix. Order matters!
-%   bc is a struct defining the boundary conditions on each side of the block.
-%       bc.w = {'dn',[function or value]}
-function [block,conn,bound,ms] = multiblockgrid(x,y,mx,my,bc)
-    n = length(y)-1; % number of blocks in the y direction.
-    m = length(x)-1; % number of blocks in the x direction.
-    N = n*m; % number of blocks
-
-    if ~issorted(x)
-        error('The elements of x seem to be in the wrong order');
-    end
-    if ~issorted(flip(y))
-        error('The elements of y seem to be in the wrong order');
-    end
-    % y = sort(y,'descend');
-
-    % Dimensions of blocks and number of points
-    block = cell(n,m);
-    for i = 1:n
-        for j = 1:m
-            block{i,j} = {
-                {x(j),x(j+1)}, {y(i+1),y(i)};
-            };
-
-            ms{i,j} = [mx(i),my(j)];
-        end
-    end
-
-    % Interface couplings
-    conn = cell(N,N);
-    for i = 1:n
-        for j = 1:m
-            I = flat_index(n,i,j);
-            if i < n
-                J = flat_index(n,i+1,j);
-                conn{I,J} = {'s','n'};
-            end
-
-            if j < m
-                J = flat_index(n,i,j+1);
-                conn{I,J} = {'e','w'};
-            end
-        end
-    end
-
-
-    % Boundary conditions
-    bound = cell(n,m);
-    for i = 1:n
-        if isfield(bc,'w')
-            bound{i,1}.w = bc.w;
-        end
-
-        if isfield(bc,'e')
-            bound{i,n}.e = bc.e;
-        end
-    end
-
-    for j = 1:m
-        if isfield(bc,'n')
-            bound{1,j}.n = bc.n;
-        end
-
-        if isfield(bc,'s')
-            bound{m,j}.s = bc.s;
-        end
-    end
-end
-
--- a/+multiblock/stitchSchemes.m	Tue Jul 24 21:08:08 2018 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,92 +0,0 @@
-% Stitch schemes together given connection matrix and BC vector.
-%     schmHand  - function_handle to a Scheme constructor
-%     order     - order of accuracy
-%     schmParam - cell array of extra parameters sent to each Scheme stored as cell arrays
-%     blocks    - block definitions, On whatever form the scheme expects.
-%     ms        - grid points in each direction for each block. Ex {[10,10], [10, 20]}
-%     conn      - connection matrix
-%     bound     - boundary condition vector, array of structs with fields w,e,s,n
-%                 each field with a parameter array that is sent to schm.boundary_condition
-%
-% Output parameters are cell arrays and cell matrices.
-%
-% Ex: [schms, D, H] = stitchSchemes(schmHand, order, schmParam, blocks, ms, conn, bound)
-function [schms, D, H] = stitchSchemes(schmHand, order, schmParam, grids, conn, bound)
-    default_arg('schmParam',[]);
-
-    n_blocks = numel(grids);
-
-    % Creating Schemes
-    for i = 1:n_blocks
-        if isempty(schmParam);
-            schms{i} = schmHand(grids{i},order,[]);
-        elseif ~iscell(schmParam)
-            param = schmParam(i);
-            schms{i} = schmHand(grids{i},order,param);
-        else
-            param = schmParam{i};
-            if iscell(param)
-                schms{i} = schmHand(grids{i},order,param{:});
-            else
-                schms{i} = schmHand(grids{i},order,param);
-            end
-        end
-
-        % class(schmParam)
-        % class(ms)
-        % class(blocks)
-        % class(schmParam{i})
-        % class(ms)
-
-
-    end
-
-
-    % Total norm
-    H = cell(n_blocks,n_blocks);
-    for i = 1:n_blocks
-        H{i,i} = schms{i}.H;
-    end
-
-    %% Total system matrix
-
-    % Differentiation terms
-    D = cell(n_blocks,n_blocks);
-    for i = 1:n_blocks
-        D{i,i} = schms{i}.D;
-    end
-
-    % Boundary penalty terms
-    for i = 1:n_blocks
-        if ~isstruct(bound{i})
-            continue
-        end
-
-        fn = fieldnames(bound{i});
-        for j = 1:length(fn);
-            bc = bound{i}.(fn{j});
-            if isempty(bc)
-                continue
-            end
-
-            [closure, ~] = schms{i}.boundary_condition(fn{j},bc{:});
-            D{i,i} = D{i,i}+closure;
-        end
-    end
-
-    % Interface penalty terms
-    for i = 1:n_blocks
-        for j = 1:n_blocks
-            intf = conn{i,j};
-            if isempty(intf)
-                continue
-            end
-
-            [uu,uv,vv,vu] = schms{i}.interface_coupling(schms{i},intf{1},schms{j},intf{2});
-            D{i,i} = D{i,i} + uu;
-            D{i,j} = uv;
-            D{j,j} = D{j,j} + vv;
-            D{j,i} = vu;
-        end
-    end
-end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d2_variable_periodic_2.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,50 @@
+function [H, HI, D1, D2, e_l, e_r, d1_l, d1_r] = d2_variable_periodic_2(m,h)
+    % m = number of unique grid points, i.e. h = L/m;
+
+    if(m<3)
+        error(['Operator requires at least ' num2str(3) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Dummy boundary operators
+    e_l = sparse(m,1);
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_r = -rot90(d1_l, 2);
+
+    % D1 operator
+    diags   = -1:1;
+    stencil = [-1/2 0 1/2];
+    D1 = stripeMatrixPeriodic(stencil, diags, m);
+    D1 = D1/h;
+
+    scheme_width = 3;
+    scheme_radius = (scheme_width-1)/2;
+
+    r = 1:m;
+    offset = scheme_width;
+    r = r + offset;
+
+    function D2 = D2_fun(c)
+        c = [c(end-scheme_width+1:end); c; c(1:scheme_width) ];
+
+        Mm1 = -c(r-1)/2 - c(r)/2;
+        M0  =  c(r-1)/2 + c(r)   + c(r+1)/2;
+        Mp1 =            -c(r)/2 - c(r+1)/2;
+
+        vals = [Mm1,M0,Mp1];
+        diags = -scheme_radius : scheme_radius;
+        M = spdiagsPeriodic(vals,diags);
+
+        M=M/h;
+        D2=HI*(-M );
+    end
+    D2 = @D2_fun;
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d2_variable_periodic_4.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,57 @@
+function [H, HI, D1, D2, e_l, e_r, d1_l, d1_r] = d2_variable_periodic_4(m,h)
+    % m = number of unique grid points, i.e. h = L/m;
+
+    if(m<5)
+        error(['Operator requires at least ' num2str(5) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Dummy boundary operators
+    e_l = sparse(m,1);
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_r = -rot90(d1_l, 2);
+
+    S = d1_l*d1_l' + d1_r*d1_r';
+
+    % D1 operator
+    stencil = [1/12 -2/3 0 2/3 -1/12];
+    diags = -2:2;
+    Q = stripeMatrixPeriodic(stencil, diags, m);
+    D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r');
+
+
+    scheme_width = 5;
+    scheme_radius = (scheme_width-1)/2;
+
+    r = 1:m;
+    offset = scheme_width;
+    r = r + offset;
+
+    function D2 = D2_fun(c)
+        c = [c(end-scheme_width+1:end); c; c(1:scheme_width) ];
+
+        % Note: these coefficients are for -M.
+        Mm2 = -1/8*c(r-2) + 1/6*c(r-1) - 1/8*c(r);
+        Mm1 = 1/6 *c(r-2) + 1/2*c(r-1) + 1/2*c(r) + 1/6*c(r+1);
+        M0  = -1/24*c(r-2)- 5/6*c(r-1) - 3/4*c(r) - 5/6*c(r+1) - 1/24*c(r+2);
+        Mp1  = 0 * c(r-2) + 1/6*c(r-1) + 1/2*c(r) + 1/2*c(r+1) + 1/6 *c(r+2);
+        Mp2  = 0 * c(r-2) + 0 * c(r-1) - 1/8*c(r) + 1/6*c(r+1) - 1/8 *c(r+2);
+
+        vals = -[Mm2,Mm1,M0,Mp1,Mp2];
+        diags = -scheme_radius : scheme_radius;
+        M = spdiagsPeriodic(vals,diags);
+
+        M=M/h;
+        D2=HI*(-M );
+
+    end
+    D2 = @D2_fun;
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d2_variable_periodic_6.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,58 @@
+function [H, HI, D1, D2, e_l, e_r, d1_l, d1_r] = d2_variable_periodic_6(m,h)
+    % m = number of unique grid points, i.e. h = L/m;
+
+    if(m<7)
+        error(['Operator requires at least ' num2str(7) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Dummy boundary operators
+    e_l = sparse(m,1);
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_r = -rot90(d1_l, 2);
+
+
+    % D1 operator
+    diags   = -3:3;
+    stencil = [-1/60 9/60 -45/60 0 45/60 -9/60 1/60];
+    D1 = stripeMatrixPeriodic(stencil, diags, m);
+    D1 = D1/h;
+
+    % D2 operator
+    scheme_width = 7;
+    scheme_radius = (scheme_width-1)/2;
+
+    r = 1:m;
+    offset = scheme_width;
+    r = r + offset;
+
+    function D2 = D2_fun(c)
+        c = [c(end-scheme_width+1:end); c; c(1:scheme_width) ];
+
+        Mm3 =  c(r-2)/0.40e2 + c(r-1)/0.40e2 - 0.11e2/0.360e3 * c(r-3) - 0.11e2/0.360e3 * c(r);
+        Mm2 =  c(r-3)/0.20e2 - 0.3e1/0.10e2 * c(r-1) + c(r+1)/0.20e2 + 0.7e1/0.40e2 * c(r) + 0.7e1/0.40e2 * c(r-2);
+        Mm1 = -c(r-3)/0.40e2 - 0.3e1/0.10e2 * c(r-2) - 0.3e1/0.10e2 * c(r+1) - c(r+2)/0.40e2 - 0.17e2/0.40e2 * c(r) - 0.17e2/0.40e2 * c(r-1);
+        M0 =  c(r-3)/0.180e3 + c(r-2)/0.8e1 + 0.19e2/0.20e2 * c(r-1) + 0.19e2/0.20e2 * c(r+1) + c(r+2)/0.8e1 + c(r+3)/0.180e3 + 0.101e3/0.180e3 * c(r);
+        Mp1 = -c(r-2)/0.40e2 - 0.3e1/0.10e2 * c(r-1) - 0.3e1/0.10e2 * c(r+2) - c(r+3)/0.40e2 - 0.17e2/0.40e2 * c(r) - 0.17e2/0.40e2 * c(r+1);
+        Mp2 =  c(r-1)/0.20e2 - 0.3e1/0.10e2 * c(r+1) + c(r+3)/0.20e2 + 0.7e1/0.40e2 * c(r) + 0.7e1/0.40e2 * c(r+2);
+        Mp3 =  c(r+1)/0.40e2 + c(r+2)/0.40e2 - 0.11e2/0.360e3 * c(r) - 0.11e2/0.360e3 * c(r+3);
+
+        vals = [Mm3,Mm2,Mm1,M0,Mp1,Mp2,Mp3];
+        diags = -scheme_radius : scheme_radius;
+        M = spdiagsPeriodic(vals,diags);
+
+        M=M/h;
+        D2=HI*(-M );
+    end
+    D2 = @D2_fun;
+
+
+end
--- a/+sbp/D2Variable.m	Tue Jul 24 21:08:08 2018 -0700
+++ b/+sbp/D2Variable.m	Thu Sep 20 12:05:20 2018 +0200
@@ -26,22 +26,39 @@
             obj.x = linspace(x_l,x_r,m)';
 
             switch order
+
+                case 6
+
+                    [obj.H, obj.HI, obj.D1, obj.D2, ...
+                    ~, obj.e_l, obj.e_r, ~, ~, ~, ~, ~,...
+                     obj.d1_l, obj.d1_r] = ...
+                        sbp.implementations.d4_variable_6(m, obj.h);
+                    obj.borrowing.M.d1 = 0.1878;
+                    obj.borrowing.R.delta_D = 0.3696;
+                    % Borrowing e^T*D1 - d1 from R
+
                 case 4
                     [obj.H, obj.HI, obj.D1, obj.D2, obj.e_l,...
                         obj.e_r, obj.d1_l, obj.d1_r] = ...
                         sbp.implementations.d2_variable_4(m,obj.h);
                     obj.borrowing.M.d1 = 0.2505765857;
+
+                    obj.borrowing.R.delta_D = 0.577587500088313;
+                    % Borrowing e^T*D1 - d1 from R
                 case 2
                     [obj.H, obj.HI, obj.D1, obj.D2, obj.e_l,...
                         obj.e_r, obj.d1_l, obj.d1_r] = ...
                         sbp.implementations.d2_variable_2(m,obj.h);
                     obj.borrowing.M.d1 = 0.3636363636; 
                     % Borrowing const taken from Virta 2014
+
+                    obj.borrowing.R.delta_D = 1.000000538455350;
+                    % Borrowing e^T*D1 - d1 from R
                     
                 otherwise
                     error('Invalid operator order %d.',order);
             end
-
+            obj.borrowing.H11 = obj.H(1,1)/obj.h; % First element in H/h,
             obj.m = m;
             obj.M = [];
         end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D2VariablePeriodic.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,71 @@
+classdef D2VariablePeriodic < sbp.OpSet
+    properties
+        D1 % SBP operator approximating first derivative
+        H % Norm matrix
+        HI % H^-1
+        Q % Skew-symmetric matrix
+        e_l % Left boundary operator
+        e_r % Right boundary operator
+        D2 % SBP operator for second derivative
+        M % Norm matrix, second derivative
+        d1_l % Left boundary first derivative
+        d1_r % Right boundary first derivative
+        m % Number of grid points.
+        h % Step size
+        x % grid
+        borrowing % Struct with borrowing limits for different norm matrices
+    end
+
+    methods
+        function obj = D2VariablePeriodic(m,lim,order)
+
+            x_l = lim{1};
+            x_r = lim{2};
+            L = x_r-x_l;
+            obj.h = L/m;
+            x = linspace(x_l,x_r,m+1)';
+            obj.x = x(1:end-1);
+
+            switch order
+
+                case 6
+                    [obj.H, obj.HI, obj.D1, obj.D2, obj.e_l,...
+                        obj.e_r, obj.d1_l, obj.d1_r] = ...
+                        sbp.implementations.d2_variable_periodic_6(m,obj.h);
+                    obj.borrowing.M.d1 = 0.1878;
+                    obj.borrowing.R.delta_D = 0.3696;
+                    % Borrowing e^T*D1 - d1 from R
+
+                case 4
+                    [obj.H, obj.HI, obj.D1, obj.D2, obj.e_l,...
+                        obj.e_r, obj.d1_l, obj.d1_r] = ...
+                        sbp.implementations.d2_variable_periodic_4(m,obj.h);
+                    obj.borrowing.M.d1 = 0.2505765857;
+
+                    obj.borrowing.R.delta_D = 0.577587500088313;
+                    % Borrowing e^T*D1 - d1 from R
+                case 2
+                    [obj.H, obj.HI, obj.D1, obj.D2, obj.e_l,...
+                        obj.e_r, obj.d1_l, obj.d1_r] = ...
+                        sbp.implementations.d2_variable_periodic_2(m,obj.h);
+                    obj.borrowing.M.d1 = 0.3636363636; 
+                    % Borrowing const taken from Virta 2014
+
+                    obj.borrowing.R.delta_D = 1.000000538455350;
+                    % Borrowing e^T*D1 - d1 from R
+                    
+                otherwise
+                    error('Invalid operator order %d.',order);
+            end
+            obj.borrowing.H11 = obj.H(1,1)/obj.h; % First element in H/h,
+
+            obj.m = m;
+            obj.M = [];
+        end
+        function str = string(obj)
+            str = [class(obj) '_' num2str(obj.order)];
+        end
+    end
+
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dCurvilinear.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,621 @@
+classdef Elastic2dCurvilinear < scheme.Scheme
+
+% Discretizes the elastic wave equation in curvilinear coordinates.
+%
+% Untransformed equation:
+% rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i 
+%
+% Transformed equation:
+% J*rho u_{i,tt} = dk J b_ik lambda b_jl dl u_j 
+%                + dk J b_jk mu b_il dl u_j 
+%                + dk J b_jk mu b_jl dl u_i 
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for varible coefficients
+        LAMBDA % Variable coefficient, related to dilation
+        MU     % Shear modulus, variable coefficient
+        RHO, RHOi % Density, variable
+
+        % Metric coefficients
+        b % Cell matrix of size dim x dim
+        J, Ji
+        beta % Cell array of scale factors
+
+        D % Total operator
+        D1 % First derivatives
+
+        % Second derivatives
+        D2_lambda
+        D2_mu
+
+        % Traction operators used for BC
+        T_l, T_r
+        tau_l, tau_r
+
+        H, Hi % Inner products
+        phi % Borrowing constant for (d1 - e^T*D1) from R
+        gamma % Borrowing constant for d1 from M
+        H11 % First element of H
+        e_l, e_r
+        d1_l, d1_r % Normal derivatives at the boundary
+        E % E{i}^T picks out component i
+        
+        H_boundary_l, H_boundary_r % Boundary inner products
+
+        % Kroneckered norms and coefficients
+        RHOi_kron
+        Ji_kron, J_kron
+        Hi_kron, H_kron
+    end
+
+    methods
+
+        function obj = Elastic2dCurvilinear(g ,order, lambda_fun, mu_fun, rho_fun, opSet)
+            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
+            default_arg('lambda_fun', @(x,y) 0*x+1);
+            default_arg('mu_fun', @(x,y) 0*x+1);
+            default_arg('rho_fun', @(x,y) 0*x+1);
+            dim = 2;
+
+            lambda = grid.evalOn(g, lambda_fun);
+            mu = grid.evalOn(g, mu_fun);
+            rho = grid.evalOn(g, rho_fun);
+            m = g.size();
+            obj.m = m;
+            m_tot = g.N();
+
+            % 1D operators
+            ops = cell(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), {0, 1}, order);
+            end
+
+            % Borrowing constants
+            for i = 1:dim
+                beta = ops{i}.borrowing.R.delta_D;
+                obj.H11{i} = ops{i}.borrowing.H11;
+                obj.phi{i} = beta/obj.H11{i};
+                obj.gamma{i} = ops{i}.borrowing.M.d1;
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            d1_l = cell(dim,1);
+            d1_r = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+                D2{i} = ops{i}.D2;
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_l{i} = ops{i}.e_l;
+                e_r{i} = ops{i}.e_r;
+                d1_l{i} = ops{i}.d1_l;
+                d1_r{i} = ops{i}.d1_r;
+            end
+
+            %====== Assemble full operators ========
+
+            % Variable coefficients
+            LAMBDA = spdiag(lambda);
+            obj.LAMBDA = LAMBDA;
+            MU = spdiag(mu);
+            obj.MU = MU;
+            RHO = spdiag(rho);
+            obj.RHO = RHO;
+            obj.RHOi = inv(RHO);
+
+            % Allocate
+            obj.D1 = cell(dim,1);
+            obj.D2_lambda = cell(dim,dim,dim);
+            obj.D2_mu = cell(dim,dim,dim);
+            obj.e_l = cell(dim,1);
+            obj.e_r = cell(dim,1);
+            obj.d1_l = cell(dim,1);
+            obj.d1_r = cell(dim,1);
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            % -- Metric coefficients ----
+            coords = g.points();
+            x = coords(:,1);
+            y = coords(:,2);
+
+            % Use non-periodic difference operators for metric even if opSet is periodic.
+            xmax = max(ops{1}.x);
+            ymax = max(ops{2}.x);
+            opSetMetric{1} = sbp.D2Variable(m(1), {0, xmax}, order);
+            opSetMetric{2} = sbp.D2Variable(m(2), {0, ymax}, order);
+            D1Metric{1} = kron(opSetMetric{1}.D1, I{2});
+            D1Metric{2} = kron(I{1}, opSetMetric{2}.D1); 
+
+            x_xi = D1Metric{1}*x;
+            x_eta = D1Metric{2}*x;
+            y_xi = D1Metric{1}*y;
+            y_eta = D1Metric{2}*y;
+
+            J = x_xi.*y_eta - x_eta.*y_xi;
+
+            b = cell(dim,dim);
+            b{1,1} = y_eta./J;
+            b{1,2} = -x_eta./J;
+            b{2,1} = -y_xi./J;
+            b{2,2} = x_xi./J;
+
+            % Scale factors for boundary integrals
+            beta = cell(dim,1);
+            beta{1} = sqrt(x_eta.^2 + y_eta.^2);
+            beta{2} = sqrt(x_xi.^2 + y_xi.^2);
+
+            J = spdiag(J);
+            Ji = inv(J);
+            for i = 1:dim
+                beta{i} = spdiag(beta{i});
+                for j = 1:dim
+                    b{i,j} = spdiag(b{i,j});
+                end
+            end
+            obj.J = J;
+            obj.Ji = Ji;
+            obj.b = b;
+            obj.beta = beta;
+            %----------------------------
+
+            % Boundary operators
+            obj.e_l{1} = kron(e_l{1},I{2});
+            obj.e_l{2} = kron(I{1},e_l{2});
+            obj.e_r{1} = kron(e_r{1},I{2});
+            obj.e_r{2} = kron(I{1},e_r{2});
+
+            obj.d1_l{1} = kron(d1_l{1},I{2});
+            obj.d1_l{2} = kron(I{1},d1_l{2});
+            obj.d1_r{1} = kron(d1_r{1},I{2});
+            obj.d1_r{2} = kron(I{1},d1_r{2});
+
+            % D2
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        obj.D2_lambda{i,j,k} = sparse(m_tot);
+                        obj.D2_mu{i,j,k} = sparse(m_tot);
+                    end
+                end
+            end
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            % x-dir
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1
+
+                        coeff_lambda = J*b{i,k}*b{j,k}*lambda;
+                        coeff_mu = J*b{j,k}*b{i,k}*mu;
+
+                        for col = 1:m(2)
+                            D_lambda = D2{1}(coeff_lambda(ind(:,col)));
+                            D_mu = D2{1}(coeff_mu(ind(:,col)));
+
+                            p = ind(:,col);
+                            obj.D2_lambda{i,j,k}(p,p) = D_lambda;
+                            obj.D2_mu{i,j,k}(p,p) = D_mu;
+                        end
+
+                    end
+                end
+            end
+
+            % y-dir
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 2
+
+                        coeff_lambda = J*b{i,k}*b{j,k}*lambda;
+                        coeff_mu = J*b{j,k}*b{i,k}*mu;
+
+                        for row = 1:m(1)
+                            D_lambda = D2{2}(coeff_lambda(ind(row,:)));
+                            D_mu = D2{2}(coeff_mu(ind(row,:)));
+
+                            p = ind(row,:);
+                            obj.D2_lambda{i,j,k}(p,p) = D_lambda;
+                            obj.D2_mu{i,j,k}(p,p) = D_mu;
+                        end
+
+                    end
+                end
+            end
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.Hi = inv(obj.H);
+            obj.H_boundary_l = cell(dim,1);
+            obj.H_boundary_l{1} = obj.e_l{1}'*beta{1}*obj.e_l{1}*H{2};
+            obj.H_boundary_l{2} = obj.e_l{2}'*beta{2}*obj.e_l{2}*H{1};
+            obj.H_boundary_r = cell(dim,1);
+            obj.H_boundary_r{1} = obj.e_r{1}'*beta{1}*obj.e_r{1}*H{2};
+            obj.H_boundary_r{2} = obj.e_r{2}'*beta{2}*obj.e_r{2}*H{1};
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye(m_tot,m_tot);
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(I,e);
+            end
+            obj.E = E;
+
+            % Differentiation matrix D (without SAT)
+            D2_lambda = obj.D2_lambda;
+            D2_mu = obj.D2_mu;
+            D1 = obj.D1;
+            D = sparse(dim*m_tot,dim*m_tot);
+            d = @kroneckerDelta;    % Kronecker delta
+            db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_lambda{i,j,k}*E{j}' + ...
+                                                      db(k,l)*D1{k}*J*b{i,k}*b{j,l}*LAMBDA*D1{l}*E{j}' ...
+                                                  );
+
+                            D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_mu{i,j,k}*E{j}' + ...
+                                                      db(k,l)*D1{k}*J*b{j,k}*b{i,l}*MU*D1{l}*E{j}' ...
+                                                  );
+
+                            D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_mu{j,j,k}*E{i}' + ...
+                                                      db(k,l)*D1{k}*J*b{j,k}*b{j,l}*MU*D1{l}*E{i}' ...
+                                                  );
+
+                        end
+                    end
+                end
+            end
+            obj.D = D;
+            %=========================================%
+
+            % Numerical traction operators for BC.
+            % Because d1 =/= e0^T*D1, the numerical tractions are different
+            % at every boundary.
+            T_l = cell(dim,1);
+            T_r = cell(dim,1);
+            tau_l = cell(dim,1);
+            tau_r = cell(dim,1);
+            % tau^{j}_i = sum_k T^{j}_{ik} u_k
+
+            d1_l = obj.d1_l;
+            d1_r = obj.d1_r;
+            e_l = obj.e_l;
+            e_r = obj.e_r;
+
+            % Loop over boundaries
+            for j = 1:dim
+                T_l{j} = cell(dim,dim);
+                T_r{j} = cell(dim,dim);
+                tau_l{j} = cell(dim,1);
+                tau_r{j} = cell(dim,1);
+
+                % Loop over components
+                for i = 1:dim
+                    tau_l{j}{i} = sparse(m_tot,dim*m_tot);
+                    tau_r{j}{i} = sparse(m_tot,dim*m_tot);
+
+                    % Loop over components that T_{ik}^{(j)} acts on
+                    for k = 1:dim
+
+                        T_l{j}{i,k} = sparse(m_tot,m_tot);
+                        T_r{j}{i,k} = sparse(m_tot,m_tot);
+
+                        for m = 1:dim
+                            for l = 1:dim
+                                T_l{j}{i,k} = T_l{j}{i,k} + ... 
+                                -d(k,l)* J*b{i,j}*b{k,m}*LAMBDA*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m}) ...
+                                -d(k,l)* J*b{k,j}*b{i,m}*MU*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m}) ...
+                                -d(i,k)* J*b{l,j}*b{l,m}*MU*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m});
+
+                                T_r{j}{i,k} = T_r{j}{i,k} + ... 
+                                d(k,l)* J*b{i,j}*b{k,m}*LAMBDA*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m}) + ...
+                                d(k,l)* J*b{k,j}*b{i,m}*MU*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m}) + ...
+                                d(i,k)* J*b{l,j}*b{l,m}*MU*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m});
+                            end
+                        end
+
+                        T_l{j}{i,k} = inv(beta{j})*T_l{j}{i,k};
+                        T_r{j}{i,k} = inv(beta{j})*T_r{j}{i,k}; 
+
+                        tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}';
+                        tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}';
+                    end
+
+                end
+            end
+            obj.T_l = T_l;
+            obj.T_r = T_r;
+            obj.tau_l = tau_l;
+            obj.tau_r = tau_r;
+
+            % Kroneckered norms and coefficients
+            I_dim = speye(dim);
+            obj.RHOi_kron = kron(obj.RHOi, I_dim);
+            obj.Ji_kron = kron(obj.Ji, I_dim);
+            obj.Hi_kron = kron(obj.Hi, I_dim);
+            obj.H_kron = kron(obj.H, I_dim);
+            obj.J_kron = kron(obj.J, I_dim);
+
+            % Misc.
+            obj.h = g.scaling();
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.2);
+
+            assert( iscell(bc), 'The BC type must be a 2x1 cell array' );
+            comp = bc{1};
+            type = bc{2};
+
+            % j is the coordinate direction of the boundary
+            j = obj.get_boundary_number(boundary);
+            [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary);
+
+            E = obj.E;
+            Hi = obj.Hi;
+            LAMBDA = obj.LAMBDA;
+            MU = obj.MU;
+            RHOi = obj.RHOi;
+            Ji = obj.Ji;
+
+            dim = obj.dim;
+            m_tot = obj.grid.N();
+
+            % Preallocate
+            closure = sparse(dim*m_tot, dim*m_tot);
+            penalty = sparse(dim*m_tot, m_tot/obj.m(j));
+
+            % Loop over components that we (potentially) have different BC on
+            k = comp;
+            switch type
+
+            % Dirichlet boundary condition
+            case {'D','d','dirichlet','Dirichlet'}
+
+                phi = obj.phi{j};
+                h = obj.h(j);
+                h11 = obj.H11{j}*h;
+                gamma = obj.gamma{j};
+
+                a_lambda = dim/h11 + 1/(h11*phi);
+                a_mu_i = 2/(gamma*h);
+                a_mu_ij = 2/h11 + 1/(h11*phi);
+
+                d = @kroneckerDelta;  % Kronecker delta
+                db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+                alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ...
+                                      + d(i,j)* a_mu_i*MU ...
+                                      + db(i,j)*a_mu_ij*MU ); 
+
+                % Loop over components that Dirichlet penalties end up on
+                for i = 1:dim
+                    C = T{k,i};
+                    A = -d(i,k)*alpha(i,j);
+                    B = A + C;
+                    closure = closure + E{i}*RHOi*Hi*Ji*B'*e*H_gamma*(e'*E{k}' ); 
+                    penalty = penalty - E{i}*RHOi*Hi*Ji*B'*e*H_gamma;
+                end 
+
+            % Free boundary condition
+            case {'F','f','Free','free','traction','Traction','t','T'}
+                    closure = closure - E{k}*RHOi*Ji*Hi*e*H_gamma* (e'*tau{k} ); 
+                    penalty = penalty + E{k}*RHOi*Ji*Hi*e*H_gamma;
+
+            % Unknown boundary condition
+            otherwise
+                error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            % Operators without subscripts are from the own domain.
+            error('Not implemented');
+            tuning = 1.2;
+
+            % j is the coordinate direction of the boundary
+            j = obj.get_boundary_number(boundary);
+            j_v = neighbour_scheme.get_boundary_number(neighbour_boundary);
+
+            % Get boundary operators
+            [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary);
+            [e_v, tau_v] = neighbour_scheme.get_boundary_operator({'e','tau'}, neighbour_boundary);
+
+            % Operators and quantities that correspond to the own domain only
+            Hi = obj.Hi;
+            RHOi = obj.RHOi;
+            dim = obj.dim;
+        
+            %--- Other operators ----
+            m_tot_u = obj.grid.N();
+            E = obj.E;
+            LAMBDA_u = obj.LAMBDA;
+            MU_u = obj.MU;
+            lambda_u = e'*LAMBDA_u*e;
+            mu_u = e'*MU_u*e;
+
+            m_tot_v = neighbour_scheme.grid.N();
+            E_v = neighbour_scheme.E;
+            LAMBDA_v = neighbour_scheme.LAMBDA;
+            MU_v = neighbour_scheme.MU;
+            lambda_v = e_v'*LAMBDA_v*e_v;
+            mu_v = e_v'*MU_v*e_v;
+            %-------------------------
+            
+            % Borrowing constants
+            phi_u = obj.phi{j};
+            h_u = obj.h(j);
+            h11_u = obj.H11{j}*h_u;
+            gamma_u = obj.gamma{j};
+
+            phi_v = neighbour_scheme.phi{j_v};
+            h_v = neighbour_scheme.h(j_v);
+            h11_v = neighbour_scheme.H11{j_v}*h_v;
+            gamma_v = neighbour_scheme.gamma{j_v};
+
+            % E > sum_i 1/(2*alpha_ij)*(tau_i)^2
+            function [alpha_ii, alpha_ij] = computeAlpha(phi,h,h11,gamma,lambda,mu) 
+                th1 = h11/(2*dim);
+                th2 = h11*phi/2;
+                th3 = h*gamma;
+                a1 = ( (th1 + th2)*th3*lambda + 4*th1*th2*mu ) / (2*th1*th2*th3);
+                a2 = ( 16*(th1 + th2)*lambda*mu ) / (th1*th2*th3);
+                alpha_ii = a1 + sqrt(a2 + a1^2);
+
+                alpha_ij = mu*(2/h11 + 1/(phi*h11));
+            end
+
+            [alpha_ii_u, alpha_ij_u] = computeAlpha(phi_u,h_u,h11_u,gamma_u,lambda_u,mu_u);
+            [alpha_ii_v, alpha_ij_v] = computeAlpha(phi_v,h_v,h11_v,gamma_v,lambda_v,mu_v);  
+            sigma_ii = tuning*(alpha_ii_u + alpha_ii_v)/4;
+            sigma_ij = tuning*(alpha_ij_u + alpha_ij_v)/4;
+
+            d = @kroneckerDelta;  % Kronecker delta
+            db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+            sigma = @(i,j) tuning*(d(i,j)*sigma_ii + db(i,j)*sigma_ij);
+
+            % Preallocate
+            closure = sparse(dim*m_tot_u, dim*m_tot_u);
+            penalty = sparse(dim*m_tot_u, dim*m_tot_v);
+
+            % Loop over components that penalties end up on
+            for i = 1:dim
+                closure = closure - E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e'*E{i}';
+                penalty = penalty + E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e_v'*E_v{i}';
+
+                closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i};
+                penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i};
+
+                % Loop over components that we have interface conditions on
+                for k = 1:dim
+                    closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}'; 
+                    penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}'; 
+                end 
+            end
+        end
+
+        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
+        function [j, nj] = get_boundary_number(obj, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch boundary
+                case {'w','W','west','West','s','S','south','South'}
+                    nj = -1;
+                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                    nj = 1;
+            end
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op: may be a cell array of strings
+        function [varargout] = get_boundary_operator(obj, op, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            if ~iscell(op)
+                op = {op};
+            end
+
+            for i = 1:length(op)
+                switch op{i}
+                    case 'e'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.e_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.e_r{j};
+                        end
+                    case 'd'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.d1_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.d1_r{j};
+                        end
+                    case 'H'
+                        switch boundary 
+                            case {'w','W','west','West','s','S','south','South'}
+                                    varargout{i} = obj.H_boundary_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                    varargout{i} = obj.H_boundary_r{j};
+                        end
+                    case 'T'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.T_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.T_r{j};
+                        end
+                    case 'tau'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.tau_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.tau_r{j};
+                        end                        
+                    otherwise
+                        error(['No such operator: operator = ' op{i}]);
+                end
+            end
+
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dVariable.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,512 @@
+classdef Elastic2dVariable < scheme.Scheme
+
+% Discretizes the elastic wave equation:
+% rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for varible coefficients
+        LAMBDA % Variable coefficient, related to dilation
+        MU     % Shear modulus, variable coefficient
+        RHO, RHOi % Density, variable
+
+        D % Total operator
+        D1 % First derivatives
+
+        % Second derivatives
+        D2_lambda
+        D2_mu
+
+        % Traction operators used for BC
+        T_l, T_r
+        tau_l, tau_r
+
+        H, Hi % Inner products
+
+        phi % Borrowing constant for (d1 - e^T*D1) from R
+        gamma % Borrowing constant for d1 from M
+        H11 % First element of H
+
+        % Borrowing from H, M, and R
+        thH
+        thM
+        thR
+
+        e_l, e_r
+        d1_l, d1_r % Normal derivatives at the boundary
+        E % E{i}^T picks out component i
+
+        H_boundary % Boundary inner products
+
+        % Kroneckered norms and coefficients
+        RHOi_kron
+        Hi_kron
+    end
+
+    methods
+
+        function obj = Elastic2dVariable(g ,order, lambda_fun, mu_fun, rho_fun, opSet)
+            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
+            default_arg('lambda_fun', @(x,y) 0*x+1);
+            default_arg('mu_fun', @(x,y) 0*x+1);
+            default_arg('rho_fun', @(x,y) 0*x+1);
+            dim = 2;
+
+            assert(isa(g, 'grid.Cartesian'))
+
+            lambda = grid.evalOn(g, lambda_fun);
+            mu = grid.evalOn(g, mu_fun);
+            rho = grid.evalOn(g, rho_fun);
+            m = g.size();
+            m_tot = g.N();
+
+            h = g.scaling();
+            lim = g.lim;
+            if isempty(lim)
+                x = g.x;
+                lim = cell(length(x),1);
+                for i = 1:length(x)
+                    lim{i} = {min(x{i}), max(x{i})};
+                end
+            end
+
+            % 1D operators
+            ops = cell(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), lim{i}, order);
+            end
+
+            % Borrowing constants
+            for i = 1:dim
+                beta = ops{i}.borrowing.R.delta_D;
+                obj.H11{i} = ops{i}.borrowing.H11;
+                obj.phi{i} = beta/obj.H11{i};
+                obj.gamma{i} = ops{i}.borrowing.M.d1;
+
+                % Better names
+                obj.thR{i} = ops{i}.borrowing.R.delta_D;
+                obj.thM{i} = ops{i}.borrowing.M.d1;
+                obj.thH{i} = ops{i}.borrowing.H11;
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            d1_l = cell(dim,1);
+            d1_r = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+                D2{i} = ops{i}.D2;
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_l{i} = ops{i}.e_l;
+                e_r{i} = ops{i}.e_r;
+                d1_l{i} = ops{i}.d1_l;
+                d1_r{i} = ops{i}.d1_r;
+            end
+
+            %====== Assemble full operators ========
+            LAMBDA = spdiag(lambda);
+            obj.LAMBDA = LAMBDA;
+            MU = spdiag(mu);
+            obj.MU = MU;
+            RHO = spdiag(rho);
+            obj.RHO = RHO;
+            obj.RHOi = inv(RHO);
+
+            obj.D1 = cell(dim,1);
+            obj.D2_lambda = cell(dim,1);
+            obj.D2_mu = cell(dim,1);
+            obj.e_l = cell(dim,1);
+            obj.e_r = cell(dim,1);
+            obj.d1_l = cell(dim,1);
+            obj.d1_r = cell(dim,1);
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            % Boundary operators
+            obj.e_l{1} = kron(e_l{1},I{2});
+            obj.e_l{2} = kron(I{1},e_l{2});
+            obj.e_r{1} = kron(e_r{1},I{2});
+            obj.e_r{2} = kron(I{1},e_r{2});
+
+            obj.d1_l{1} = kron(d1_l{1},I{2});
+            obj.d1_l{2} = kron(I{1},d1_l{2});
+            obj.d1_r{1} = kron(d1_r{1},I{2});
+            obj.d1_r{2} = kron(I{1},d1_r{2});
+
+            % D2
+            for i = 1:dim
+                obj.D2_lambda{i} = sparse(m_tot);
+                obj.D2_mu{i} = sparse(m_tot);
+            end
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            for i = 1:m(2)
+                D_lambda = D2{1}(lambda(ind(:,i)));
+                D_mu = D2{1}(mu(ind(:,i)));
+
+                p = ind(:,i);
+                obj.D2_lambda{1}(p,p) = D_lambda;
+                obj.D2_mu{1}(p,p) = D_mu;
+            end
+
+            for i = 1:m(1)
+                D_lambda = D2{2}(lambda(ind(i,:)));
+                D_mu = D2{2}(mu(ind(i,:)));
+
+                p = ind(i,:);
+                obj.D2_lambda{2}(p,p) = D_lambda;
+                obj.D2_mu{2}(p,p) = D_mu;
+            end
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.Hi = inv(obj.H);
+            obj.H_boundary = cell(dim,1);
+            obj.H_boundary{1} = H{2};
+            obj.H_boundary{2} = H{1};
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye(m_tot,m_tot);
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(I,e);
+            end
+            obj.E = E;
+
+            % Differentiation matrix D (without SAT)
+            D2_lambda = obj.D2_lambda;
+            D2_mu = obj.D2_mu;
+            D1 = obj.D1;
+            D = sparse(dim*m_tot,dim*m_tot);
+            d = @kroneckerDelta;    % Kronecker delta
+            db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+            for i = 1:dim
+                for j = 1:dim
+                    D = D + E{i}*inv(RHO)*( d(i,j)*D2_lambda{i}*E{j}' +...
+                                            db(i,j)*D1{i}*LAMBDA*D1{j}*E{j}' ...
+                                          );
+                    D = D + E{i}*inv(RHO)*( d(i,j)*D2_mu{i}*E{j}' +...
+                                            db(i,j)*D1{j}*MU*D1{i}*E{j}' + ...
+                                            D2_mu{j}*E{i}' ...
+                                          );
+                end
+            end
+            obj.D = D;
+            %=========================================%
+
+            % Numerical traction operators for BC.
+            % Because d1 =/= e0^T*D1, the numerical tractions are different
+            % at every boundary.
+            T_l = cell(dim,1);
+            T_r = cell(dim,1);
+            tau_l = cell(dim,1);
+            tau_r = cell(dim,1);
+            % tau^{j}_i = sum_k T^{j}_{ik} u_k
+
+            d1_l = obj.d1_l;
+            d1_r = obj.d1_r;
+            e_l = obj.e_l;
+            e_r = obj.e_r;
+            D1 = obj.D1;
+
+            % Loop over boundaries
+            for j = 1:dim
+                T_l{j} = cell(dim,dim);
+                T_r{j} = cell(dim,dim);
+                tau_l{j} = cell(dim,1);
+                tau_r{j} = cell(dim,1);
+
+                % Loop over components
+                for i = 1:dim
+                    tau_l{j}{i} = sparse(m_tot,dim*m_tot);
+                    tau_r{j}{i} = sparse(m_tot,dim*m_tot);
+                    for k = 1:dim
+                        T_l{j}{i,k} = ...
+                        -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})...
+                        -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})...
+                        -d(i,k)*MU*e_l{j}*d1_l{j}';
+
+                        T_r{j}{i,k} = ...
+                        d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})...
+                        +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})...
+                        +d(i,k)*MU*e_r{j}*d1_r{j}';
+
+                        tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}';
+                        tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}';
+                    end
+
+                end
+            end
+            obj.T_l = T_l;
+            obj.T_r = T_r;
+            obj.tau_l = tau_l;
+            obj.tau_r = tau_r;
+
+            % Kroneckered norms and coefficients
+            I_dim = speye(dim);
+            obj.RHOi_kron = kron(obj.RHOi, I_dim);
+            obj.Hi_kron = kron(obj.Hi, I_dim);
+
+            % Misc.
+            obj.m = m;
+            obj.h = h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.2);
+
+            assert( iscell(bc), 'The BC type must be a 2x1 cell array' );
+            comp = bc{1};
+            type = bc{2};
+
+            % j is the coordinate direction of the boundary
+            j = obj.get_boundary_number(boundary);
+            [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary);
+
+            E = obj.E;
+            Hi = obj.Hi;
+            LAMBDA = obj.LAMBDA;
+            MU = obj.MU;
+            RHOi = obj.RHOi;
+
+            dim = obj.dim;
+            m_tot = obj.grid.N();
+
+            % Preallocate
+            closure = sparse(dim*m_tot, dim*m_tot);
+            penalty = sparse(dim*m_tot, m_tot/obj.m(j));
+
+            k = comp;
+            switch type
+
+            % Dirichlet boundary condition
+            case {'D','d','dirichlet','Dirichlet'}
+
+                phi = obj.phi{j};
+                h = obj.h(j);
+                h11 = obj.H11{j}*h;
+                gamma = obj.gamma{j};
+
+                a_lambda = dim/h11 + 1/(h11*phi);
+                a_mu_i = 2/(gamma*h);
+                a_mu_ij = 2/h11 + 1/(h11*phi);
+
+                d = @kroneckerDelta;  % Kronecker delta
+                db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+                alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ...
+                                      + d(i,j)* a_mu_i*MU ...
+                                      + db(i,j)*a_mu_ij*MU );
+
+                % Loop over components that Dirichlet penalties end up on
+                for i = 1:dim
+                    C = T{k,i};
+                    A = -d(i,k)*alpha(i,j);
+                    B = A + C;
+                    closure = closure + E{i}*RHOi*Hi*B'*e*H_gamma*(e'*E{k}' );
+                    penalty = penalty - E{i}*RHOi*Hi*B'*e*H_gamma;
+                end
+
+            % Free boundary condition
+            case {'F','f','Free','free','traction','Traction','t','T'}
+                    closure = closure - E{k}*RHOi*Hi*e*H_gamma* (e'*tau{k} );
+                    penalty = penalty + E{k}*RHOi*Hi*e*H_gamma;
+
+            % Unknown boundary condition
+            otherwise
+                error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            % Operators without subscripts are from the own domain.
+            tuning = 1.2;
+
+            % j is the coordinate direction of the boundary
+            j = obj.get_boundary_number(boundary);
+            j_v = neighbour_scheme.get_boundary_number(neighbour_boundary);
+
+            % Get boundary operators
+            [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary);
+            [e_v, tau_v] = neighbour_scheme.get_boundary_operator({'e','tau'}, neighbour_boundary);
+
+            % Operators and quantities that correspond to the own domain only
+            Hi = obj.Hi;
+            RHOi = obj.RHOi;
+            dim = obj.dim;
+
+            %--- Other operators ----
+            m_tot_u = obj.grid.N();
+            E = obj.E;
+            LAMBDA_u = obj.LAMBDA;
+            MU_u = obj.MU;
+            lambda_u = e'*LAMBDA_u*e;
+            mu_u = e'*MU_u*e;
+
+            m_tot_v = neighbour_scheme.grid.N();
+            E_v = neighbour_scheme.E;
+            LAMBDA_v = neighbour_scheme.LAMBDA;
+            MU_v = neighbour_scheme.MU;
+            lambda_v = e_v'*LAMBDA_v*e_v;
+            mu_v = e_v'*MU_v*e_v;
+            %-------------------------
+
+            % Borrowing constants
+            h_u = obj.h(j);
+            thR_u = obj.thR{j}*h_u;
+            thM_u = obj.thM{j}*h_u;
+            thH_u = obj.thH{j}*h_u;
+
+            h_v = neighbour_scheme.h(j_v);
+            thR_v = neighbour_scheme.thR{j_v}*h_v;
+            thH_v = neighbour_scheme.thH{j_v}*h_v;
+            thM_v = neighbour_scheme.thM{j_v}*h_v;
+
+            % alpha = penalty strength for normal component, beta for tangential
+            alpha_u = dim*lambda_u/(4*thH_u) + lambda_u/(4*thR_u) + mu_u/(2*thM_u);
+            alpha_v = dim*lambda_v/(4*thH_v) + lambda_v/(4*thR_v) + mu_v/(2*thM_v);
+            beta_u = mu_u/(2*thH_u) + mu_u/(4*thR_u);
+            beta_v = mu_v/(2*thH_v) + mu_v/(4*thR_v);
+            alpha = alpha_u + alpha_v;
+            beta = beta_u + beta_v;
+
+            d = @kroneckerDelta;  % Kronecker delta
+            db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+            strength = @(i,j) tuning*(d(i,j)*alpha + db(i,j)*beta);
+
+            % Preallocate
+            closure = sparse(dim*m_tot_u, dim*m_tot_u);
+            penalty = sparse(dim*m_tot_u, dim*m_tot_v);
+
+            % Loop over components that penalties end up on
+            for i = 1:dim
+                closure = closure - E{i}*RHOi*Hi*e*strength(i,j)*H_gamma*e'*E{i}';
+                penalty = penalty + E{i}*RHOi*Hi*e*strength(i,j)*H_gamma*e_v'*E_v{i}';
+
+                closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i};
+                penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i};
+
+                % Loop over components that we have interface conditions on
+                for k = 1:dim
+                    closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}';
+                    penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}';
+                end
+            end
+        end
+
+        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
+        function [j, nj] = get_boundary_number(obj, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch boundary
+                case {'w','W','west','West','s','S','south','South'}
+                    nj = -1;
+                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                    nj = 1;
+            end
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op: may be a cell array of strings
+        function [varargout] = get_boundary_operator(obj, op, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            if ~iscell(op)
+                op = {op};
+            end
+
+            for i = 1:length(op)
+                switch op{i}
+                    case 'e'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.e_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.e_r{j};
+                        end
+                    case 'd'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.d1_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.d1_r{j};
+                        end
+                    case 'H'
+                        varargout{i} = obj.H_boundary{j};
+                    case 'T'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.T_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.T_r{j};
+                        end
+                    case 'tau'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.tau_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.tau_r{j};
+                        end
+                    otherwise
+                        error(['No such operator: operator = ' op{i}]);
+                end
+            end
+
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Heat2dCurvilinear.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,385 @@
+classdef Heat2dCurvilinear < scheme.Scheme
+
+% Discretizes the Laplacian with variable coefficent, curvilinear,
+% in the Heat equation way (i.e., the discretization matrix is not necessarily 
+% symmetric)
+% u_t = div * (kappa * grad u ) 
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrix for variable coefficients
+        KAPPA % Variable coefficient
+
+        D % Total operator
+        D1 % First derivatives
+
+        % Second derivatives
+        D2_kappa
+
+        H, Hi % Inner products
+        e_l, e_r
+        d1_l, d1_r % Normal derivatives at the boundary
+        alpha % Vector of borrowing constants
+        
+        % Boundary inner products
+        H_boundary_l, H_boundary_r 
+
+        % Metric coefficients
+        b % Cell matrix of size dim x dim
+        J, Ji
+        beta % Cell array of scale factors
+
+        % Numerical boundary flux operators
+        flux_l, flux_r
+
+    end
+
+    methods
+
+        function obj = Heat2dCurvilinear(g ,order, kappa_fun, opSet)
+            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
+            default_arg('kappa_fun', @(x,y) 0*x+1);
+            dim = 2;
+
+            kappa = grid.evalOn(g, kappa_fun);
+            m = g.size();
+            m_tot = g.N();
+
+            % 1D operators
+            ops = cell(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), {0, 1}, order);
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            d1_l = cell(dim,1);
+            d1_r = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+                D2{i} = ops{i}.D2;
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_l{i} = ops{i}.e_l;
+                e_r{i} = ops{i}.e_r;
+                d1_l{i} = ops{i}.d1_l;
+                d1_r{i} = ops{i}.d1_r;
+            end
+
+            %====== Assemble full operators ========
+            KAPPA = spdiag(kappa);
+            obj.KAPPA = KAPPA;
+
+            % Allocate
+            obj.D1 = cell(dim,1);
+            obj.D2_kappa = cell(dim,1);
+            obj.e_l = cell(dim,1);
+            obj.e_r = cell(dim,1);
+            obj.d1_l = cell(dim,1);
+            obj.d1_r = cell(dim,1);
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            % -- Metric coefficients ----
+            coords = g.points();
+            x = coords(:,1);
+            y = coords(:,2);
+
+            % Use non-periodic difference operators for metric even if opSet is periodic.
+            xmax = max(ops{1}.x);
+            ymax = max(ops{2}.x);
+            opSetMetric{1} = sbp.D2Variable(m(1), {0, xmax}, order);
+            opSetMetric{2} = sbp.D2Variable(m(2), {0, ymax}, order);
+            D1Metric{1} = kron(opSetMetric{1}.D1, I{2});
+            D1Metric{2} = kron(I{1}, opSetMetric{2}.D1); 
+
+            x_xi = D1Metric{1}*x;
+            x_eta = D1Metric{2}*x;
+            y_xi = D1Metric{1}*y;
+            y_eta = D1Metric{2}*y;
+
+            J = x_xi.*y_eta - x_eta.*y_xi;
+
+            b = cell(dim,dim);
+            b{1,1} = y_eta./J;
+            b{1,2} = -x_eta./J;
+            b{2,1} = -y_xi./J;
+            b{2,2} = x_xi./J;
+
+            % Scale factors for boundary integrals
+            beta = cell(dim,1);
+            beta{1} = sqrt(x_eta.^2 + y_eta.^2);
+            beta{2} = sqrt(x_xi.^2 + y_xi.^2);
+
+            J = spdiag(J);
+            Ji = inv(J);
+            for i = 1:dim
+                beta{i} = spdiag(beta{i});
+                for j = 1:dim
+                    b{i,j} = spdiag(b{i,j});
+                end
+            end
+            obj.J = J;
+            obj.Ji = Ji;
+            obj.b = b;
+            obj.beta = beta;
+            %----------------------------
+
+            % Boundary operators
+            obj.e_l{1} = kron(e_l{1},I{2});
+            obj.e_l{2} = kron(I{1},e_l{2});
+            obj.e_r{1} = kron(e_r{1},I{2});
+            obj.e_r{2} = kron(I{1},e_r{2});
+
+            obj.d1_l{1} = kron(d1_l{1},I{2});
+            obj.d1_l{2} = kron(I{1},d1_l{2});
+            obj.d1_r{1} = kron(d1_r{1},I{2});
+            obj.d1_r{2} = kron(I{1},d1_r{2});
+
+            % D2 coefficients
+            kappa_coeff = cell(dim,dim);
+            for j = 1:dim
+                obj.D2_kappa{j} = sparse(m_tot,m_tot); 
+                kappa_coeff{j} = sparse(m_tot,1);
+                for i = 1:dim
+                    kappa_coeff{j} = kappa_coeff{j} + b{i,j}*J*b{i,j}*kappa;
+                end
+            end
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            % x-dir
+            j = 1;
+            for col = 1:m(2)
+                D_kappa = D2{1}(kappa_coeff{j}(ind(:,col)));
+
+                p = ind(:,col);
+                obj.D2_kappa{j}(p,p) = D_kappa;
+            end
+
+            % y-dir
+            j = 2;
+            for row = 1:m(1)
+                D_kappa = D2{2}(kappa_coeff{j}(ind(row,:)));
+
+                p = ind(row,:);
+                obj.D2_kappa{j}(p,p) = D_kappa;
+            end
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.Hi = inv(obj.H);
+            obj.H_boundary_l = cell(dim,1);
+            obj.H_boundary_l{1} = obj.e_l{1}'*beta{1}*obj.e_l{1}*H{2};
+            obj.H_boundary_l{2} = obj.e_l{2}'*beta{2}*obj.e_l{2}*H{1};
+            obj.H_boundary_r = cell(dim,1);
+            obj.H_boundary_r{1} = obj.e_r{1}'*beta{1}*obj.e_r{1}*H{2};
+            obj.H_boundary_r{2} = obj.e_r{2}'*beta{2}*obj.e_r{2}*H{1};
+
+            %=== Differentiation matrix D (without SAT) ===
+            D2_kappa = obj.D2_kappa;
+            D1 = obj.D1;
+            D = sparse(m_tot,m_tot);
+
+            d = @kroneckerDelta;    % Kronecker delta
+            db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+
+            % 2nd derivatives
+            for j = 1:dim
+                D = D + Ji*D2_kappa{j};
+            end
+
+            % Mixed terms
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        D = D + db(i,j)*Ji*D1{j}*b{i,j}*J*KAPPA*b{i,k}*D1{k};
+                    end
+                end
+            end
+            obj.D = D;
+            %=========================================%
+
+            % Normal flux operators for BC.
+            flux_l = cell(dim,1);
+            flux_r = cell(dim,1);
+
+            d1_l = obj.d1_l;
+            d1_r = obj.d1_r;
+            e_l = obj.e_l;
+            e_r = obj.e_r;
+
+            % Loop over boundaries
+            for j = 1:dim
+                flux_l{j} = sparse(m_tot,m_tot);
+                flux_r{j} = sparse(m_tot,m_tot);
+
+                % Loop over dummy index
+                for i = 1:dim
+                    % Loop over dummy index
+                    for k = 1:dim
+                        flux_l{j} = flux_l{j} ...
+                                  - beta{j}\b{i,j}*J*KAPPA*b{i,k}*( d(j,k)*e_l{k}*d1_l{k}' + db(j,k)*D1{k} );
+
+                        flux_r{j} = flux_r{j} ...
+                                  + beta{j}\b{i,j}*J*KAPPA*b{i,k}*( d(j,k)*e_r{k}*d1_r{k}' + db(j,k)*D1{k} );
+                    end
+
+                end
+            end
+            obj.flux_l = flux_l;
+            obj.flux_r = flux_r;
+
+            % Misc.
+            obj.m = m;
+            obj.h = g.scaling();
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+            obj.alpha = [ops{1}.borrowing.M.d1, ops{2}.borrowing.M.d1];
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, type, symmetric, tuning)
+            default_arg('type','Neumann');
+            default_arg('symmetric', false);
+            default_arg('tuning',1.2);
+
+            % j is the coordinate direction of the boundary
+            % nj: outward unit normal component. 
+            % nj = -1 for west, south, bottom boundaries
+            % nj = 1  for east, north, top boundaries
+            [j, nj] = obj.get_boundary_number(boundary);
+            switch nj
+            case 1
+                e = obj.e_r{j};
+                flux = obj.flux_r{j};
+                H_gamma = obj.H_boundary_r{j};
+            case -1
+                e = obj.e_l{j};
+                flux = obj.flux_l{j};
+                H_gamma = obj.H_boundary_l{j};
+            end
+
+            Hi = obj.Hi;
+            Ji = obj.Ji;
+            KAPPA = obj.KAPPA;
+            kappa_gamma = e'*KAPPA*e; 
+            h = obj.h(j);
+            alpha = h*obj.alpha(j);
+
+            switch type
+
+            % Dirichlet boundary condition
+            case {'D','d','dirichlet','Dirichlet'}
+
+                if ~symmetric
+                    closure = -Ji*Hi*flux'*e*H_gamma*(e' ); 
+                    penalty = Ji*Hi*flux'*e*H_gamma;
+                else
+                    closure = Ji*Hi*flux'*e*H_gamma*(e' )...
+                              -tuning*2/alpha*Ji*Hi*e*kappa_gamma*H_gamma*(e' ) ; 
+                    penalty =  -Ji*Hi*flux'*e*H_gamma ...
+                              +tuning*2/alpha*Ji*Hi*e*kappa_gamma*H_gamma;
+                end
+
+            % Normal flux boundary condition
+            case {'N','n','neumann','Neumann'}
+                    closure = -Ji*Hi*e*H_gamma*(e'*flux ); 
+                    penalty =  Ji*Hi*e*H_gamma; 
+
+            % Unknown boundary condition
+            otherwise
+                error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            error('Interface not implemented');
+        end
+
+        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
+        function [j, nj] = get_boundary_number(obj, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch boundary
+                case {'w','W','west','West','s','S','south','South'}
+                    nj = -1;
+                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                    nj = 1;
+            end
+        end
+
+        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
+        function [return_op] = get_boundary_operator(obj, op, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch op
+                case 'e'
+                    switch boundary
+                        case {'w','W','west','West','s','S','south','South'}
+                            return_op = obj.e_l{j};
+                        case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                            return_op = obj.e_r{j};
+                    end
+                case 'd'
+                    switch boundary
+                        case {'w','W','west','West','s','S','south','South'}
+                            return_op = obj.d1_l{j};
+                        case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                            return_op = obj.d1_r{j};
+                    end
+                otherwise
+                    error(['No such operator: operatr = ' op]);
+            end
+
+        end
+
+        function N = size(obj)
+            N = prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Heat2dVariable.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,276 @@
+classdef Heat2dVariable < scheme.Scheme
+
+% Discretizes the Laplacian with variable coefficent,
+% In the Heat equation way (i.e., the discretization matrix is not necessarily 
+% symmetric)
+% u_t = div * (kappa * grad u ) 
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrix for variable coefficients
+        KAPPA % Variable coefficient
+
+        D % Total operator
+        D1 % First derivatives
+
+        % Second derivatives
+        D2_kappa
+
+        H, Hi % Inner products
+        e_l, e_r
+        d1_l, d1_r % Normal derivatives at the boundary
+        alpha % Vector of borrowing constants
+        
+        H_boundary % Boundary inner products
+
+    end
+
+    methods
+
+        function obj = Heat2dVariable(g ,order, kappa_fun, opSet)
+            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
+            default_arg('kappa_fun', @(x,y) 0*x+1);
+            dim = 2;
+
+            assert(isa(g, 'grid.Cartesian'))
+
+            kappa = grid.evalOn(g, kappa_fun);
+            m = g.size();
+            m_tot = g.N();
+
+            h = g.scaling();
+            lim = g.lim;
+
+            % 1D operators
+            ops = cell(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), lim{i}, order);
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            d1_l = cell(dim,1);
+            d1_r = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+                D2{i} = ops{i}.D2;
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_l{i} = ops{i}.e_l;
+                e_r{i} = ops{i}.e_r;
+                d1_l{i} = ops{i}.d1_l;
+                d1_r{i} = ops{i}.d1_r;
+            end
+
+            %====== Assemble full operators ========
+            KAPPA = spdiag(kappa);
+            obj.KAPPA = KAPPA;
+
+            obj.D1 = cell(dim,1);
+            obj.D2_kappa = cell(dim,1);
+            obj.e_l = cell(dim,1);
+            obj.e_r = cell(dim,1);
+            obj.d1_l = cell(dim,1);
+            obj.d1_r = cell(dim,1);
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            % Boundary operators
+            obj.e_l{1} = kron(e_l{1},I{2});
+            obj.e_l{2} = kron(I{1},e_l{2});
+            obj.e_r{1} = kron(e_r{1},I{2});
+            obj.e_r{2} = kron(I{1},e_r{2});
+
+            obj.d1_l{1} = kron(d1_l{1},I{2});
+            obj.d1_l{2} = kron(I{1},d1_l{2});
+            obj.d1_r{1} = kron(d1_r{1},I{2});
+            obj.d1_r{2} = kron(I{1},d1_r{2});
+
+            % D2
+            for i = 1:dim
+                obj.D2_kappa{i} = sparse(m_tot);
+            end
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            for i = 1:m(2)
+                D_kappa = D2{1}(kappa(ind(:,i)));
+                p = ind(:,i);
+                obj.D2_kappa{1}(p,p) = D_kappa;
+            end
+
+            for i = 1:m(1)
+                D_kappa = D2{2}(kappa(ind(i,:)));
+                p = ind(i,:);
+                obj.D2_kappa{2}(p,p) = D_kappa;
+            end
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.Hi = inv(obj.H);
+            obj.H_boundary = cell(dim,1);
+            obj.H_boundary{1} = H{2};
+            obj.H_boundary{2} = H{1};
+
+            % Differentiation matrix D (without SAT)
+            D2_kappa = obj.D2_kappa;
+            D1 = obj.D1;
+            D = sparse(m_tot,m_tot);
+            for i = 1:dim
+                D = D + D2_kappa{i};
+            end
+            obj.D = D;
+            %=========================================%
+
+            % Misc.
+            obj.m = m;
+            obj.h = h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+            obj.alpha = [ops{1}.borrowing.M.d1, ops{2}.borrowing.M.d1];
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, type, symmetric, tuning)
+            default_arg('type','Neumann');
+            default_arg('symmetric', false);
+            default_arg('tuning',1.2);
+
+            % j is the coordinate direction of the boundary
+            % nj: outward unit normal component. 
+            % nj = -1 for west, south, bottom boundaries
+            % nj = 1  for east, north, top boundaries
+            [j, nj] = obj.get_boundary_number(boundary);
+            switch nj
+            case 1
+                e = obj.e_r;
+                d = obj.d1_r;
+            case -1
+                e = obj.e_l;
+                d = obj.d1_l;
+            end
+
+            Hi = obj.Hi;
+            H_gamma = obj.H_boundary{j};
+            KAPPA = obj.KAPPA;
+            kappa_gamma = e{j}'*KAPPA*e{j}; 
+            h = obj.h(j);
+            alpha = h*obj.alpha(j);
+
+            switch type
+
+            % Dirichlet boundary condition
+            case {'D','d','dirichlet','Dirichlet'}
+
+                if ~symmetric
+                    closure = -nj*Hi*d{j}*kappa_gamma*H_gamma*(e{j}' ); 
+                    penalty =  nj*Hi*d{j}*kappa_gamma*H_gamma;
+                else
+                    closure = nj*Hi*d{j}*kappa_gamma*H_gamma*(e{j}' )...
+                              -tuning*2/alpha*Hi*e{j}*kappa_gamma*H_gamma*(e{j}' ) ; 
+                    penalty =  -nj*Hi*d{j}*kappa_gamma*H_gamma ...
+                              +tuning*2/alpha*Hi*e{j}*kappa_gamma*H_gamma;
+                end
+
+            % Free boundary condition
+            case {'N','n','neumann','Neumann'}
+                    closure = -nj*Hi*e{j}*kappa_gamma*H_gamma*(d{j}' ); 
+                    penalty =  Hi*e{j}*kappa_gamma*H_gamma; 
+                    % penalty is for normal derivative and not for derivative, hence the sign.
+
+            % Unknown boundary condition
+            otherwise
+                error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            error('Interface not implemented');
+        end
+
+        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
+        function [j, nj] = get_boundary_number(obj, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch boundary
+                case {'w','W','west','West','s','S','south','South'}
+                    nj = -1;
+                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                    nj = 1;
+            end
+        end
+
+        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
+        function [return_op] = get_boundary_operator(obj, op, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch op
+                case 'e'
+                    switch boundary
+                        case {'w','W','west','West','s','S','south','South'}
+                            return_op = obj.e_l{j};
+                        case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                            return_op = obj.e_r{j};
+                    end
+                case 'd'
+                    switch boundary
+                        case {'w','W','west','West','s','S','south','South'}
+                            return_op = obj.d1_l{j};
+                        case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                            return_op = obj.d1_r{j};
+                    end
+                otherwise
+                    error(['No such operator: operatr = ' op]);
+            end
+
+        end
+
+        function N = size(obj)
+            N = prod(obj.m);
+        end
+    end
+end
--- a/+scheme/bcSetup.m	Tue Jul 24 21:08:08 2018 -0700
+++ b/+scheme/bcSetup.m	Thu Sep 20 12:05:20 2018 +0200
@@ -11,49 +11,34 @@
 % In the case where it only depends on time it should return the data as grid function for the boundary.
 % In the case where it also takes space coordinates the number of space coordinates should match the number of dimensions of the problem domain.
 % For example in the 2D case: f(t,x,y).
-function [closure, S] = bcSetup(diffOp, bc, S_sign)
+function [closure, S] = bcSetup(diffOp, bcs, S_sign)
     default_arg('S_sign', 1);
-    assertType(bc, 'cell');
+    assertType(bcs, 'cell');
     assert(S_sign == 1 || S_sign == -1, 'S_sign must be either 1 or -1');
 
+    verifyBcFormat(bcs, diffOp);
 
     % Setup storage arrays
     closure = spzeros(size(diffOp));
-    gridDataPenalties = {};
-    gridDataFunctions = {};
-    symbolicDataPenalties = {};
-    symbolicDataFunctions = {};
-    symbolicDataCoords = {};
+    gridData = {};
+    symbolicData = {};
 
     % Collect closures, penalties and data
-    for i = 1:length(bc)
-        assertType(bc{i}, 'struct');
-        [localClosure, penalty] = diffOp.boundary_condition(bc{i}.boundary, bc{i}.type);
+    for i = 1:length(bcs)
+        [localClosure, penalty] = diffOp.boundary_condition(bcs{i}.boundary, bcs{i}.type);
         closure = closure + localClosure;
 
-        if ~isfield(bc{i},'data') || isempty(bc{i}.data)
-            % Skip to next loop if there is no data
+        [ok, isSymbolic, data] = parseData(bcs{i}, penalty, diffOp.grid);
+
+        if ~ok
+            % There was no data
             continue
         end
-        assertType(bc{i}.data, 'function_handle');
 
-        % Find dimension
-        dim = size(diffOp.grid.getBoundary(bc{i}.boundary), 2);
-
-        if nargin(bc{i}.data) == 1
-            % Grid data
-            boundarySize = [size(diffOp.grid.getBoundary(bc{i}.boundary),1),1];
-            assertSize(bc{i}.data(0), boundarySize); % Eval for t = 0 and make sure the function returns a grid vector of the correct size.
-            gridDataPenalties{end+1} = penalty;
-            gridDataFunctions{end+1} = bc{i}.data;
-        elseif nargin(bc{i}.data) == 1+dim
-            % Symbolic data
-            coord = diffOp.grid.getBoundary(bc{i}.boundary);
-            symbolicDataPenalties{end+1} = penalty;
-            symbolicDataFunctions{end+1} = bc{i}.data;
-            symbolicDataCoords{end+1} = num2cell(coord ,1);
+        if isSymbolic
+            symbolicData{end+1} = data;
         else
-            error('sbplib:scheme:bcSetup:DataWrongNumberOfArguments', 'bc{%d}.data has the wrong number of input arguments. Must be either only time or time and space.', i);
+            gridData{end+1} = data;
         end
     end
 
@@ -61,15 +46,67 @@
     O = spzeros(size(diffOp),1);
     function v = S_fun(t)
         v = O;
-        for i = 1:length(gridDataFunctions)
-            v = v + gridDataPenalties{i}*gridDataFunctions{i}(t);
+        for i = 1:length(gridData)
+            v = v + gridData{i}.penalty*gridData{i}.func(t);
         end
 
-        for i = 1:length(symbolicDataFunctions)
-            v = v + symbolicDataPenalties{i}*symbolicDataFunctions{i}(t, symbolicDataCoords{i}{:});
+        for i = 1:length(symbolicData)
+            v = v + symbolicData{i}.penalty*symbolicData{i}.func(t, symbolicData{i}.coords{:});
         end
 
         v = S_sign * v;
     end
     S = @S_fun;
 end
+
+function verifyBcFormat(bcs, diffOp)
+    for i = 1:length(bcs)
+        assertType(bcs{i}, 'struct');
+        assertStructFields(bcs{i}, {'type', 'boundary'});
+
+        if ~isfield(bcs{i}, 'data') || isempty(bcs{i}.data)
+            continue
+        end
+
+        if ~isa(bcs{i}.data, 'function_handle')
+            error('bcs{%d}.data should be a function of time or a function of time and space',i);
+        end
+
+        b = diffOp.grid.getBoundary(bcs{i}.boundary);
+
+        dim = size(b,2);
+
+        if nargin(bcs{i}.data) == 1
+            % Grid data (only function of time)
+            assertSize(bcs{i}.data(0), 1, size(b));
+        elseif nargin(bcs{i}.data) ~= 1+dim
+           error('sbplib:scheme:bcSetup:DataWrongNumberOfArguments', 'bcs{%d}.data has the wrong number of input arguments. Must be either only time or time and space.', i);
+        end
+    end
+end
+
+function [ok, isSymbolic, dataStruct] = parseData(bc, penalty, grid)
+    if ~isfield(bc,'data') || isempty(bc.data)
+        isSymbolic = [];
+        dataStruct = struct();
+        ok = false;
+        return
+    end
+    ok = true;
+
+    nArg = nargin(bc.data);
+
+    if nArg > 1
+        % Symbolic data
+        isSymbolic = true;
+        coord = grid.getBoundary(bc.boundary);
+        dataStruct.penalty = penalty;
+        dataStruct.func = bc.data;
+        dataStruct.coords = num2cell(coord, 1);
+    else
+        % Grid data
+        isSymbolic = false;
+        dataStruct.penalty = penalty;
+        dataStruct.func = bcs{i}.data;
+    end
+end
--- a/.hgtags	Tue Jul 24 21:08:08 2018 -0700
+++ b/.hgtags	Thu Sep 20 12:05:20 2018 +0200
@@ -1,2 +1,4 @@
 18c023aaf3f79cbe2b9b1cf547d80babdaa1637d v0.1
 0776fa4754ff0c1918f6e1278c66f48c62d05736 grids0.1
+b723495cdb2f96314d7b3f0aa79723a7dc088c7d v0.2
+08f3ffe63f484d02abce8df4df61e826f568193f elastic1.0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/LICENSE.txt	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,25 @@
+MIT License
+
+Copyright (c)
+2015-2018 Jonatan Werpers
+2015-2018 Martin Almquist
+2016-2018 Ylva Rydin
+2018 Vidar Stiernström
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/README.md	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,2 @@
+# SBPLIB
+sbplib is a library of primitives and help functions for working with summation-by-parts finite differences in Matlab. To use sbplib download the code and add the sbplib folder to the matlab path.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kroneckerDelta.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,6 @@
+function d = kroneckerDelta(i,j)
+
+d = 0;
+if i==j
+	d = 1;
+end
\ No newline at end of file
--- a/spdiag.m	Tue Jul 24 21:08:08 2018 -0700
+++ b/spdiag.m	Thu Sep 20 12:05:20 2018 +0200
@@ -5,6 +5,6 @@
         a = a';
     end
 
-    n = length(a)-abs(i);
+    n = length(a)+abs(i);
     A = spdiags(a,i,n,n);
 end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/spdiagsPeriodic.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,60 @@
+function A = spdiagsPeriodic(vals,diags)
+    % Creates an m x m periodic discretization matrix.
+    % vals - m x ndiags matrix of values
+    % diags - 1 x ndiags vector of the 'center diagonals' that vals end up on
+    % vals that are not on main diagonal are going to spill over to
+    % off-diagonal corners.
+
+    default_arg('diags',0);
+
+    [m, ~] = size(vals);
+
+    A = sparse(m,m);
+
+    for i = 1:length(diags)
+
+        d = diags(i);
+        a = vals(:,i);
+
+        % Sub-diagonals
+        if d < 0
+            a_bulk = a(1+abs(d):end);
+            a_corner = a(1:1+abs(d)-1);
+            corner_diag = m-abs(d);
+            A = A + spdiagVariable(a_bulk, d);
+            A = A + spdiagVariable(a_corner, corner_diag);
+
+        % Super-diagonals
+        elseif d > 0
+            a_bulk = a(1:end-d);
+            a_corner = a(end-d+1:end);
+            corner_diag = -m + d;
+            A = A + spdiagVariable(a_bulk, d);
+            A = A + spdiagVariable(a_corner, corner_diag);
+
+        % Main diagonal
+        else
+             A = A + spdiagVariable(a, 0);
+        end
+
+    end
+
+end
+
+function A = spdiagVariable(a,i)
+    default_arg('i',0);
+
+    if isrow(a)
+        a = a';
+    end
+
+    n = length(a)+abs(i);
+
+    if i > 0
+        a = [sparse(i,1); a];
+    elseif i < 0
+        a = [a; sparse(abs(i),1)];
+    end
+
+    A = spdiags(a,i,n,n);
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/stripeMatrixPeriodic.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,8 @@
+% Creates a periodic discretization matrix of size n x n
+%  with the values of val on the diagonals diag.
+%   A = stripeMatrix(val,diags,n)
+function A = stripeMatrixPeriodic(val,diags,n)
+
+    D = ones(n,1)*val;
+    A = spdiagsPeriodic(D,diags);
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/structArray.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,16 @@
+% % Usage example:
+% c = structArray({'a','b'}, {
+%     1, 2;
+%     3, 4;
+% });
+
+function c = structArray(fields, values)
+    assert(length(fields) == size(values, 2), 'Number of fields and number of colums of ''values'' must be equal');
+    c = struct();
+
+    for i = 1:size(values, 1)
+        for j = 1:length(fields)
+            c(i).(fields{j}) = values{i,j};
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/structCellArray.m	Thu Sep 20 12:05:20 2018 +0200
@@ -0,0 +1,16 @@
+% % Usage example:
+% c = structCellArray({'a','b'}, {
+%     1, 2;
+%     3, 4;
+% });
+
+function c = structCellArray(fields, values)
+    assert(length(fields) == size(values, 2), 'Number of fields and number of colums of ''values'' must be equal');
+    c = cell(1, size(values, 1));
+
+    for i = 1:size(values, 1)
+        for j = 1:length(fields)
+            c{i}.(fields{j}) = values{i,j};
+        end
+    end
+end