Mercurial > repos > public > sbplib
changeset 49:8f0c2dc747dd
Made lots of updates to Euler1d.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 05 Nov 2015 16:33:53 -0800 |
parents | b21c53ff61d4 |
children | 75ebf5d3cfe5 |
files | +scheme/Euler1d.m |
diffstat | 1 files changed, 196 insertions(+), 97 deletions(-) [+] |
line wrap: on
line diff
--- a/+scheme/Euler1d.m Thu Nov 05 16:31:53 2015 -0800 +++ b/+scheme/Euler1d.m Thu Nov 05 16:33:53 2015 -0800 @@ -1,4 +1,4 @@ -classdef SchmBeam2d < noname.Scheme +classdef Euler1d < scheme.Scheme properties m % Number of points in each direction, possibly a vector N % Number of points total @@ -8,52 +8,75 @@ order % Order accuracy for the approximation D % non-stabalized scheme operator + Fx M % Derivative norm - alpha + gamma + + T + p + H % Discrete norm Hi - e_l, e_r + e_l, e_r, e_L, e_R; end methods - function obj = SchmBeam2d(m,xlim,order,gamma,opsGen) + function obj = Euler1d(m,xlim,order,gama,opsGen,do_upwind) default_arg('opsGen',@sbp.Ordinary); - default_arg('gamma', 1.4); + default_arg('gama', 1.4); + default_arg('do_upwind', false); + gamma = gama; - [x, h] = util.get_grid(xlim{:},m_x); + [x, h] = util.get_grid(xlim{:},m); - ops = opsGen(m_x,h_x,order); + if do_upwind + ops = spb.Upwind(m,h,order); + Dp = ops.derivatives.Dp; + Dm = ops.derivatives.Dm; - I_x = speye(m); - I_3 = speye(3); + printExpr('issparse(Dp)'); + printExpr('issparse(Dm)'); - D1 = sparse(ops.derivatives.D1); + D1 = (Dp + Dm)/2; + else + ops = opsGen(m,h,order); + D1 = sparse(ops.derivatives.D1); + end + H = sparse(ops.norms.H); Hi = sparse(ops.norms.HI); e_l = sparse(ops.boundary.e_1); e_r = sparse(ops.boundary.e_m); + I_x = speye(m); + I_3 = speye(3); + + D1 = kr(D1, I_3); + if do_upwind + Ddisp = kr(Ddisp,I_3); + end % Norms obj.H = kr(H,I_3); + obj.Hi = kr(Hi,I_3); % Boundary operators - obj.e_l = kr(e_l,I_3); - obj.e_r = kr(e_r,I_3); + obj.e_l = e_l; + obj.e_r = e_r; + obj.e_L = kr(e_l,I_3); + obj.e_R = kr(e_r,I_3); obj.m = m; obj.h = h; obj.order = order; - % Man har Q_t+F_x=0 i 1D Euler, där % q=[rho, rho*u, e]^T % F=[rho*u, rho*u^2+p, (e+p)*u] ^T - % p=(gamma-1)*(e-rho/2*u^2); - + % p=(gamma-1)*(e-rho*u^2/2); %Solving on form q_t + F_x = 0 function o = F(q) @@ -65,16 +88,17 @@ o = (gamma-1)*(q(3)-q(2).^2/q(1)/2); end - % R = % [sqrt(2*(gamma-1))*rho , rho , rho ; % sqrt(2*(gamma-1))*rho*u , rho*(u+c) , rho*(u-c) ; % sqrt(2*(gamma-1))*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c, e+(gamma-1)*(e-rho*u^2/2)-rho*u*c]); - function o = R(q) + function o = T(q) rho = q(1); u = q(2)/q(1); e = q(3); + c = sqrt(gamma*p(q)/rho); + sqrt2gamm = sqrt(2*(gamma-1)); o = [ @@ -82,6 +106,7 @@ sqrt2gamm*rho*u , rho*(u+c) , rho*(u-c) ; sqrt2gamm*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c , e+(gamma-1)*(e-rho*u^2/2)-rho*u*c ]; + % Devide columns by stuff to get rid of extra comp? end function o = Fx(q) @@ -89,82 +114,184 @@ for i = 1:3:3*m o(i:i+2) = F(q(i:i+2)); end + o = D1*o; end - % A=R*Lambda*inv(R), där Lambda=diag(u, u+c, u-c) (c är ljudhastigheten) % c^2=gamma*p/rho % function o = A(rho,u,e) % end - + if do_upwind + obj.D = @(q)-Fx(q) + Ddisp*(1)*u; + else + obj.D = @(q)-Fx(q); + end - obj.D = @Fx; + obj.Fx = @Fx; + obj.T = @T; obj.u = x; obj.x = kr(x,ones(3,1)); + obj.p = @p; + obj.gamma = gamma; end - % Closure functions return the opertors applied to the own doamin to close the boundary - % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. - % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. - % type is a string specifying the type of boundary condition if there are several. - % data is a function returning the data that should be applied at the boundary. - % neighbour_scheme is an instance of Scheme that should be interfaced to. - % neighbour_boundary is a string specifying which boundary to interface to. - function [closure, penalty] = boundary_condition(obj,boundary, alpha,data) - default_arg('alpha',0); - default_arg('data',0); + % Enforces the boundary conditions + % w+ = R*w- + g(t) + function closure = boundary_condition(obj,boundary, type, varargin) + [e_s,e_S,s] = obj.get_boundary_ops(boundary); % Boundary condition on form - % w_in = w_out + g, where g is data + % w_in = R*w_out + g, where g is data - [e,s] = obj.get_boundary_ops(boundary); + % How to handle when the number of BC we want to set changes + % How to handel u = 0 as an example + + % Måste sätta in s och fixa tecken som de ska vara - tuning = 1; % ????????????????????????? + % Kanske ska man tala om vilka karakteristikor som är in och ut i anropet + % Man kan sen kolla om det stämmer (men hur blir det med u=0?) + % Och antingen tillåta att man skickar in flera alternativ och väljer automatiskt + % eller låta koden utanför bestämma vilken penalty som ska appliceras. - tau = R(q)*lambda(q)*tuning; % SHOULD THIS BE abs(lambda)????? - - function closure_fun(q,t) - q_b = e * q; + switch type + case 'wall' + closure = obj.boundary_condition_wall(boundary); + otherwise + error('Unsupported bc type: %s', type); end - function penalty_fun(q,t) - end + % T = obj.T(e_S*v); + + % c = sqrt(gamma*p/rho); + % l = [u, u+c, u-c]; + + % p_in = find(s*l <= 0); + % p_ot = find(s*l > 0); + + % p = [p_in, p_ot] % Permutation to sort + % pt(p) = 1:length(p); % Inverse permutation + + % L_in = diag(abs(l(p_in))); + % L_ot = diag(abs(l(p_ot))); + + % Lambda = diag(u, u+c, u-c); + + % tau = -e_S*sparse(T*[L_in; R'*L_in]); % Något med pt - + % w_s = T'*(e_S*v); + % w_in = w_s(p_in); + % w_ot = w_s(p_ot); - % tau1 < -alpha^2/gamma - - tau1 = tuning * alpha/delt; - tau4 = s*alpha; + % function closure_fun(q,t) + % obj.Hi * tau * (w_in - R*w_ot - g(t)); + % end - sig2 = tuning * alpha/gamm; - sig3 = -s*alpha; + % function closure_fun_indep(q,t) + % obj.Hi * tau * (w_in - R*w_ot - g; + % end - tau = tau1*e+tau4*d3; - sig = sig2*d1+sig3*d2; - - closure = halfnorm_inv*(tau*e' + sig*d1'); - pp_e = halfnorm_inv*tau; - pp_d = halfnorm_inv*sig; - switch class(data) - case 'double' - penalty_e = pp_e*data; - penalty_d = pp_d*data; - case 'function_handle' - penalty_e = @(t)pp_e*data(t); - penalty_d = @(t)pp_d*data(t); - otherwise - error('Wierd data argument!') - end + % switch class(g) + % case 'double' + % closure = @closure_fun; + % case 'function_handle' + % closure = @closure_fun_indep; + % otherwise + % error('Wierd data argument!'); + % end end + % Set wall boundary condition v = 0. + function closure = boundary_condition_wall(obj,boundary) + [e_s,e_S,s] = obj.get_boundary_ops(boundary); + + % v = 0 corresponds to + % L = [0 1 0]; + % g = 0 + % + % Tp = + % R = -(u-c)/(u+c) + + % tau = alpha * (u+c) + % (alpha+1)(u+c) + 1/4* alpha^2|u-c| <= 0 + % 4*(alpha+1)(u+c) + alpha^2|u-c| <= 0 + % 4 * (alpha+1)(u+c) + alpha^2|u| + alpha^2*c <= 0 + % |u|*(sgn(u)*4 + sgn(u)*4*alpha + alpha^2) + c*(4 + 4alpha + alpha^2) <= 0 + % |u|*(alpha^2 + 4*sgn(u)*alpha + 4*sgn(u)) + c*(alpha+2)^2 <= 0 + % |u|*[(alpha + 2*sgn(u))^2 - 4*(sgn(u)-1)] + c*(alpha+2)^2 <= 0 + + + % om vi låtsas att u = 0: + % (alpha+1)c + 1/4 * alpha^2*c <= 0 + % alpha^2 + 4*alpha +4 <= 0 + % (alpha + 2)^2 <= 0 + % alpha = -2 gives tau = -2*c; + + + % Vill vi sätta penalty på karateristikan som är nära noll också eller vill + % vi låta den vara fri? + + + switch s + case -1 + p_in = 2; + p_zero = 1; + p_ot = 3; + case 1 + p_in = 3; + p_zero = 1; + p_ot = 2; + otherwise + error(); + end + + p = [p_in, p_zero, p_ot]; % Permutation to sort + pt(p) = 1:length(p); % Inverse permutation + + function o = closure_fun(q) + p = obj.p(q); + + q_s = e_S'*q; + rho = q_s(1); + u = q_s(2)/rho; + c = sqrt(obj.gamma*p/rho); + + T = obj.T(q_s); + R = -(u-c)/(u+c); + % l = [u, u+c, u-c]; + + % p_in = find(s*l <= 0); + % p_ot = find(s*l > 0); + + + tau1 = -2*c; + tau2 = [0; 0]; % Penalty only on ingoing char. + + % L_in = diag(abs(l(p_in))); + % L_ot = diag(abs(l(p_ot))); + + tauHat = [tau1; tau2]; + tau = -s*e_S*sparse(T*tauHat(pt)); + + w_s = inv(T)*q_s; + % w_s = T\q_s; + % w_s = Tinv * q_s; % Med analytisk matris + w_in = w_s(p_in); + w_ot = w_s(p_ot); + + o = obj.Hi * tau * (w_in - R*w_ot); + end + + closure = @closure_fun; + end + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + error('NOT DONE') % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary); @@ -197,44 +324,16 @@ % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary - function [e,d1,d2,d3,s,gamm, delt, halfnorm_inv] = get_boundary_ops(obj,boundary) + function [e,E,s] = get_boundary_ops(obj,boundary) switch boundary - case 'w' - e = obj.e_w; - d1 = obj.d1_w; - d2 = obj.d2_w; - d3 = obj.d3_w; + case 'l' + e = obj.e_l; + E = obj.e_L; s = -1; - gamm = obj.gamm_x; - delt = obj.delt_x; - halfnorm_inv = obj.Hix; - case 'e' - e = obj.e_e; - d1 = obj.d1_e; - d2 = obj.d2_e; - d3 = obj.d3_e; + case 'r' + e = obj.e_r; + E = obj.e_R; s = 1; - gamm = obj.gamm_x; - delt = obj.delt_x; - halfnorm_inv = obj.Hix; - case 's' - e = obj.e_s; - d1 = obj.d1_s; - d2 = obj.d2_s; - d3 = obj.d3_s; - s = -1; - gamm = obj.gamm_y; - delt = obj.delt_y; - halfnorm_inv = obj.Hiy; - case 'n' - e = obj.e_n; - d1 = obj.d1_n; - d2 = obj.d2_n; - d3 = obj.d3_n; - s = 1; - gamm = obj.gamm_y; - delt = obj.delt_y; - halfnorm_inv = obj.Hiy; otherwise error('No such boundary: boundary = %s',boundary); end