changeset 180:001239c03eb2 feature/beams

Merge with feature/grids.
author Jonatan Werpers <jonatan@werpers.com>
date Mon, 29 Feb 2016 15:08:01 +0100
parents d095b5396103 (diff) 8ca4f80fcdd3 (current diff)
children 419ec303e97d
files +scheme/Scheme.m
diffstat 3 files changed, 174 insertions(+), 29 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Beam.m	Mon Feb 29 15:08:01 2016 +0100
@@ -0,0 +1,160 @@
+classdef Beam < scheme.Scheme
+    properties
+        order % Order accuracy for the approximation
+        grid
+
+        D % non-stabalized scheme operator
+        alpha
+
+        H % Discrete norm
+        Hi
+
+        e_l, e_r
+        d1_l, d1_r
+        d2_l, d2_r
+        d3_l, d3_r
+        gamm
+        delt
+    end
+
+    methods
+        function obj = Beam(grid, order, alpha, opsGen)
+            default_arg('alpha', 1);
+            default_arg('opsGen', @sbp.Higher);
+
+            if ~isa(grid, 'grid.Cartesian') || grid.D() ~= 1
+                error('Grid must be 1d cartesian');
+            end
+
+            obj.grid = grid;
+            obj.order = order;
+            obj.alpha = alpha;
+
+            m = grid.m;
+            h = grid.scaling();
+
+            ops = opsGen(m, h, order);
+
+            I = speye(m);
+
+            D4 = sparse(ops.derivatives.D4);
+            obj.H =  sparse(ops.norms.H);
+            obj.Hi = sparse(ops.norms.HI);
+            obj.e_l = sparse(ops.boundary.e_1);
+            obj.e_r = sparse(ops.boundary.e_m);
+            obj.d1_l = sparse(ops.boundary.S_1);
+            obj.d1_r = sparse(ops.boundary.S_m);
+            obj.d2_l  = sparse(ops.boundary.S2_1);
+            obj.d2_r  = sparse(ops.boundary.S2_m);
+            obj.d3_l  = sparse(ops.boundary.S3_1);
+            obj.d3_r  = sparse(ops.boundary.S3_m);
+
+            obj.D = alpha*D4;
+
+            obj.gamm = h*ops.borrowing.N.S2/2;
+            obj.delt = h^3*ops.borrowing.N.S3/2;
+        end
+
+
+        % Closure functions return the opertors applied to the own doamin to close the boundary
+        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty_e, penalty_d] = boundary_condition(obj,boundary,type)
+            default_arg('type','dn');
+
+            [e, d1, d2, d3, s] = obj.get_boundary_ops(boundary);
+            gamm = obj.gamm;
+            delt = obj.delt;
+
+            switch type
+                case {'dn'} % Dirichlet-neumann boundary condition
+                    alpha = obj.alpha;
+
+                    % tau1 < -alpha^2/gamma
+                    tuning = 1.1;
+
+                    tau1 = tuning * alpha/delt;
+                    tau4 = s*alpha;
+
+                    sig2 = tuning * alpha/gamm;
+                    sig3 = -s*alpha;
+
+                    tau = tau1*e+tau4*d3;
+                    sig = sig2*d1+sig3*d2;
+
+                    closure = obj.Hi*(tau*e' + sig*d1');
+
+                    penalty_e = obj.Hi*tau;
+                    penalty_d = obj.Hi*sig;
+                otherwise % Unknown, boundary condition
+                    error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            [e_u,d1_u,d2_u,d3_u,s_u] = obj.get_boundary_ops(boundary);
+            [e_v,d1_v,d2_v,d3_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
+
+            gamm_u = obj.gamm;
+            delt_u = obj.delt;
+
+            gamm_v = neighbour_scheme.gamm;
+            delt_v = neighbour_scheme.delt;
+
+            tuning = 2;
+
+            alpha_u = obj.alpha;
+            alpha_v = neighbour_scheme.alpha;
+
+            tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning;
+            % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning;
+            tau4 = s_u*alpha_u/2;
+
+            sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning;
+            sig3 = -s_u*alpha_u/2;
+
+            phi2 = s_u*1/2;
+
+            psi1 = -s_u*1/2;
+
+            tau = tau1*e_u  +                     tau4*d3_u;
+            sig =           sig2*d1_u + sig3*d2_u          ;
+            phi =           phi2*d1_u                      ;
+            psi = psi1*e_u                                 ;
+
+            closure =  obj.Hi*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u');
+            penalty = -obj.Hi*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v');
+        end
+
+        % Returns the boundary ops and sign for the boundary specified by the string boundary.
+        % The right boundary is considered the positive boundary
+        function [e, d1, d2, d3, s] = get_boundary_ops(obj,boundary)
+            switch boundary
+                case 'l'
+                    e  = obj.e_l;
+                    d1 = obj.d1_l;
+                    d2 = obj.d2_l;
+                    d3 = obj.d3_l;
+                    s = -1;
+                case 'r'
+                    e  = obj.e_r;
+                    d1 = obj.d1_r;
+                    d2 = obj.d2_r;
+                    d3 = obj.d3_r;
+                    s = 1;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+        end
+
+        function N = size(obj)
+            N = prod(obj.m);
+        end
+
+    end
+end
--- a/+scheme/Beam2d.m	Mon Feb 29 15:01:58 2016 +0100
+++ b/+scheme/Beam2d.m	Mon Feb 29 15:08:01 2016 +0100
@@ -1,10 +1,6 @@
 classdef Beam2d < scheme.Scheme
     properties
-        m % Number of points in each direction, possibly a vector
-        N % Number of points total
-        h % Grid spacing
-        u,v % Grid
-        x,y % Values of x and y for each grid point
+        grid
         order % Order accuracy for the approximation
 
         D % non-stabalized scheme operator
@@ -27,21 +23,23 @@
 
     methods
         function obj = Beam2d(m,lim,order,alpha,opsGen)
+            default_arg('alpha',1);
             default_arg('opsGen',@sbp.Higher);
-            default_arg('a',1);
 
-            if length(m) == 1
-                m = [m m];
+            if ~isa(grid, 'grid.Cartesian') || grid.D() ~= 2
+                error('Grid must be 2d cartesian');
             end
 
-            m_x = m(1);
-            m_y = m(2);
+            obj.grid = grid;
+            obj.alpha = alpha;
+            obj.order = order;
 
-            xlim = lim{1};
-            ylim = lim{2};
+            m_x = grid.m(1);
+            m_y = grid.m(2);
 
-            [x, h_x] = util.get_grid(xlim{:},m_x);
-            [y, h_y] = util.get_grid(ylim{:},m_y);
+            h = grid.scaling();
+            h_x = h(1);
+            h_y = h(2);
 
             ops_x = opsGen(m_x,h_x,order);
             ops_y = opsGen(m_y,h_y,order);
@@ -49,9 +47,6 @@
             I_x = speye(m_x);
             I_y = speye(m_y);
 
-
-
-
             D4_x = sparse(ops_x.derivatives.D4);
             H_x =  sparse(ops_x.norms.H);
             Hi_x = sparse(ops_x.norms.HI);
@@ -105,16 +100,7 @@
             obj.d3_s = kr(I_x,d3_l_y);
             obj.d3_n = kr(I_x,d3_r_y);
 
-            obj.m = m;
-            obj.h = [h_x h_y];
-            obj.order = order;
-
-            obj.alpha = alpha;
             obj.D = alpha*D4;
-            obj.u = x;
-            obj.v = y;
-            obj.x = kr(x,ones(m_y,1));
-            obj.y = kr(ones(m_x,1),y);
 
             obj.gamm_x = h_x*ops_x.borrowing.N.S2/2;
             obj.delt_x = h_x^3*ops_x.borrowing.N.S3/2;
--- a/+scheme/Scheme.m	Mon Feb 29 15:01:58 2016 +0100
+++ b/+scheme/Scheme.m	Mon Feb 29 15:08:01 2016 +0100
@@ -20,11 +20,10 @@
         % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
         %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
         %       type                is a string specifying the type of boundary condition if there are several.
-        %       data                is a function returning the data that should be applied at the boundary.
         %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
         %       neighbour_boundary  is a string specifying which boundary to interface to.
-        m = boundary_condition(obj,boundary,type,data)
-        m = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+        [closure, penalty] = boundary_condition(obj,boundary,type)
+        [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
         N = size(obj) % Returns the number of degrees of freedom.
 
     end