changeset 570:7d5d74940987 feature/grids

Merge laplace refactor. Refactor class to more closely resemble SBP notation. Fix bc bugs
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 01 Sep 2017 11:07:15 +0200
parents 12ee11893453 (current diff) f1a01a48779c (diff)
children f8072bb8d1d1
files
diffstat 2 files changed, 133 insertions(+), 142 deletions(-) [+]
line wrap: on
line diff
--- a/+scheme/LaplaceCurvilinear.m	Fri Sep 01 10:52:56 2017 +0200
+++ b/+scheme/LaplaceCurvilinear.m	Fri Sep 01 11:07:15 2017 +0200
@@ -7,32 +7,37 @@
 
         order % Order accuracy for the approximation
 
-        D % non-stabalized scheme operator
-        M % Derivative norm
-        a,b
+        a,b % Parameters of the operator
+
+
+        % Inner products and operators for physical coordinates
+        D % Laplace operator
+        H, Hi % Inner product
+        e_w, e_e, e_s, e_n
+        d_w, d_e, d_s, d_n % Normal derivatives at the boundary
+        H_w, H_e, H_s, H_n % Boundary inner products
+        Dx, Dy % Physical derivatives
+        M % Gradient inner product
+
+        % Metric coefficients
         J, Ji
         a11, a12, a22
+        x_u
+        x_v
+        y_u
+        y_v
 
-        H % Discrete norm
-        Hi
+        % Inner product and operators for logical coordinates
         H_u, H_v % Norms in the x and y directions
+        Hi_u, Hi_v
         Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
-        Hi_u, Hi_v
         Hiu, Hiv
-        e_w, e_e, e_s, e_n
         du_w, dv_w
         du_e, dv_e
         du_s, dv_s
         du_n, dv_n
         gamm_u, gamm_v
         lambda
-
-        Dx, Dy % Physical derivatives
-
-        x_u
-        x_v
-        y_u
-        y_v
     end
 
     methods
@@ -44,7 +49,6 @@
             default_arg('a', 1);
             default_arg('b', 1);
 
-
             if b ~=1
                 error('Not implemented yet')
             end
@@ -60,7 +64,8 @@
             h_u = h(1);
             h_v = h(2);
 
-            % Operators
+
+            % 1D operators
             ops_u = opSet(m_u, {0, 1}, order);
             ops_v = opSet(m_v, {0, 1}, order);
 
@@ -85,10 +90,30 @@
             d1_l_v = ops_v.d1_l;
             d1_r_v = ops_v.d1_r;
 
+
+            % Logical operators
             Du = kr(D1_u,I_v);
             Dv = kr(I_u,D1_v);
+            obj.Hu  = kr(H_u,I_v);
+            obj.Hv  = kr(I_u,H_v);
+            obj.Hiu = kr(Hi_u,I_v);
+            obj.Hiv = kr(I_u,Hi_v);
 
-            % Metric derivatives
+            e_w  = kr(e_l_u,I_v);
+            e_e  = kr(e_r_u,I_v);
+            e_s  = kr(I_u,e_l_v);
+            e_n  = kr(I_u,e_r_v);
+            obj.du_w = kr(d1_l_u,I_v);
+            obj.dv_w = (e_w'*Dv)';
+            obj.du_e = kr(d1_r_u,I_v);
+            obj.dv_e = (e_e'*Dv)';
+            obj.du_s = (e_s'*Du)';
+            obj.dv_s = kr(I_u,d1_l_v);
+            obj.du_n = (e_n'*Du)';
+            obj.dv_n = kr(I_u,d1_r_v);
+
+
+            % Metric coefficients
             coords = g.points();
             x = coords(:,1);
             y = coords(:,2);
@@ -104,8 +129,14 @@
             a22 =  1./J .* (x_u.^2  + y_u.^2);
             lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2));
 
+            obj.x_u = x_u;
+            obj.x_v = x_v;
+            obj.y_u = y_u;
+            obj.y_v = y_v;
+
+
             % Assemble full operators
-            L_12 = spdiags(a12, 0, m_tot, m_tot);
+            L_12 = spdiag(a12);
             Duv = Du*L_12*Dv;
             Dvu = Dv*L_12*Du;
 
@@ -125,31 +156,55 @@
                 Dvv(p,p) = D;
             end
 
-            obj.H = kr(H_u,H_v);
-            obj.Hi = kr(Hi_u,Hi_v);
-            obj.Hu  = kr(H_u,I_v);
-            obj.Hv  = kr(I_u,H_v);
-            obj.Hiu = kr(Hi_u,I_v);
-            obj.Hiv = kr(I_u,Hi_v);
+
+            % Physical operators
+            obj.J = spdiag(J);
+            obj.Ji = spdiag(1./J);
+
+            obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv);
+            obj.H = obj.J*kr(H_u,H_v);
+            obj.Hi = obj.Ji*kr(Hi_u,Hi_v);
+
+            obj.e_w = e_w;
+            obj.e_e = e_e;
+            obj.e_s = e_s;
+            obj.e_n = e_n;
+
+            %% normal derivatives
+            I_w = ind(1,:);
+            I_e = ind(end,:);
+            I_s = ind(:,1);
+            I_n = ind(:,end);
 
-            obj.e_w  = kr(e_l_u,I_v);
-            obj.e_e  = kr(e_r_u,I_v);
-            obj.e_s  = kr(I_u,e_l_v);
-            obj.e_n  = kr(I_u,e_r_v);
-            obj.du_w = kr(d1_l_u,I_v);
-            obj.dv_w = (obj.e_w'*Dv)';
-            obj.du_e = kr(d1_r_u,I_v);
-            obj.dv_e = (obj.e_e'*Dv)';
-            obj.du_s = (obj.e_s'*Du)';
-            obj.dv_s = kr(I_u,d1_l_v);
-            obj.du_n = (obj.e_n'*Du)';
-            obj.dv_n = kr(I_u,d1_r_v);
+            a11_w = spdiag(a11(I_w));
+            a12_w = spdiag(a12(I_w));
+            a11_e = spdiag(a11(I_e));
+            a12_e = spdiag(a12(I_e));
+            a22_s = spdiag(a22(I_s));
+            a12_s = spdiag(a12(I_s));
+            a22_n = spdiag(a22(I_n));
+            a12_n = spdiag(a12(I_n));
+
+            s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2);
+            s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2);
+            s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2);
+            s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2);
 
-            obj.x_u = x_u;
-            obj.x_v = x_v;
-            obj.y_u = y_u;
-            obj.y_v = y_v;
+            obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))';
+            obj.d_e =    (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))';
+            obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))';
+            obj.d_n =    (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))';
+
+            obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv;
+            obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv;
 
+            %% Boundary inner products
+            obj.H_w = H_v*spdiag(s_w);
+            obj.H_e = H_v*spdiag(s_e);
+            obj.H_s = H_u*spdiag(s_s);
+            obj.H_n = H_u*spdiag(s_n);
+
+            % Misc.
             obj.m = m;
             obj.h = [h_u h_v];
             obj.order = order;
@@ -157,17 +212,11 @@
 
             obj.a = a;
             obj.b = b;
-            obj.J = spdiags(J, 0, m_tot, m_tot);
-            obj.Ji = spdiags(1./J, 0, m_tot, m_tot);
             obj.a11 = a11;
             obj.a12 = a12;
             obj.a22 = a22;
-            obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv);
             obj.lambda = lambda;
 
-            obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv;
-            obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv;
-
             obj.gamm_u = h_u*ops_u.borrowing.M.d1;
             obj.gamm_v = h_v*ops_v.borrowing.M.d1;
         end
@@ -184,62 +233,34 @@
             default_arg('type','neumann');
             default_arg('parameter', []);
 
-            [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv  ,              ~,          ~, ~, scale_factor] = obj.get_boundary_ops(boundary);
+            [e, d, gamm, H_b, ~] = obj.get_boundary_ops(boundary);
             switch type
                 % Dirichlet boundary condition
                 case {'D','d','dirichlet'}
-                    % v denotes the solution in the neighbour domain
                     tuning = 1.2;
                     % tuning = 20.2;
-                    [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t] = obj.get_boundary_ops(boundary);
 
-                    a_n = spdiag(coeff_n);
-                    a_t = spdiag(coeff_t);
-
-                    F = (s * a_n * d_n' + s * a_t*d_t')';
-
-                    u = obj;
+                    b1 = gamm*obj.lambda./obj.a11.^2;
+                    b2 = gamm*obj.lambda./obj.a22.^2;
 
-                    b1 = gamm*u.lambda./u.a11.^2;
-                    b2 = gamm*u.lambda./u.a22.^2;
+                    tau1 = tuning * spdiag(-1./b1 - 1./b2);
+                    tau2 = 1;
 
-                    tau  = -1./b1 - 1./b2;
-                    tau = tuning * spdiag(tau);
-                    sig1 = 1;
+                    tau = (tau1*e + tau2*d)*H_b;
 
-                    penalty_parameter_1 = halfnorm_inv_n*(tau + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e;
-
-                    closure = obj.Ji*obj.a * penalty_parameter_1*e';
-                    penalty = -obj.Ji*obj.a * penalty_parameter_1;
+                    closure =  obj.a*obj.Hi*tau*e';
+                    penalty = -obj.a*obj.Hi*tau;
 
 
                 % Neumann boundary condition
                 case {'N','n','neumann'}
-                    a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n));
-                    a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t));
-                    d = (a_n * d_n' + a_t*d_t')';
-
-                    tau1 = -s;
+                    tau1 = -1;
                     tau2 = 0;
-                    tau = obj.a * obj.Ji*(tau1*e + tau2*d);
-
-                    closure = halfnorm_inv*tau*d';
-                    penalty = -halfnorm_inv*tau;
+                    tau = (tau1*e + tau2*d)*H_b;
 
-                % Characteristic boundary condition
-                case {'characteristic', 'char', 'c'}
-                    default_arg('parameter', 1);
-                    beta = parameter;
+                    closure =  obj.a*obj.Hi*tau*d';
+                    penalty = -obj.a*obj.Hi*tau;
 
-                    a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n));
-                    a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t));
-                    d = s*(a_n * d_n' + a_t*d_t')'; % outward facing normal derivative
-
-                    tau = -obj.a * 1/beta*obj.Ji*e;
-
-                    closure{1} = halfnorm_inv*tau*spdiag(scale_factor)*e';
-                    closure{2} = halfnorm_inv*tau*beta*d';
-                    penalty = -halfnorm_inv*tau;
 
                 % Unknown, boundary condition
                 otherwise
@@ -252,16 +273,8 @@
             % v denotes the solution in the neighbour domain
             tuning = 1.2;
             % tuning = 20.2;
-            [e_u, d_n_u, d_t_u, coeff_n_u, coeff_t_u, s_u, gamm_u, halfnorm_inv_u_n, halfnorm_inv_u_t, halfnorm_u_t, I_u] = obj.get_boundary_ops(boundary);
-            [e_v, d_n_v, d_t_v, coeff_n_v, coeff_t_v, s_v, gamm_v, halfnorm_inv_v_n, halfnorm_inv_v_t, halfnorm_v_t, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
-
-            a_n_u = spdiag(coeff_n_u);
-            a_t_u = spdiag(coeff_t_u);
-            a_n_v = spdiag(coeff_n_v);
-            a_t_v = spdiag(coeff_t_v);
-
-            F_u = (s_u * a_n_u * d_n_u' + s_u * a_t_u*d_t_u')';
-            F_v = (s_v * a_n_v * d_n_v' + s_v * a_t_v*d_t_v')';
+            [e_u, d_u, gamm_u, H_b_u, I_u] = obj.get_boundary_ops(boundary);
+            [e_v, d_v, gamm_v, H_b_v, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
 
             u = obj;
             v = neighbour_scheme;
@@ -271,24 +284,25 @@
             b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2;
             b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2;
 
-            tau = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v);
-            tau = tuning * spdiag(tau);
-            sig1 = 1/2;
-            sig2 = -1/2;
+            tau1 = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v);
+            tau1 = tuning * spdiag(tau1);
+            tau2 = 1/2;
 
-            penalty_parameter_1 = halfnorm_inv_u_n*(e_u*tau + sig1*halfnorm_inv_u_t*F_u*e_u'*halfnorm_u_t*e_u);
-            penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u;
+            sig1 = -1/2;
+            sig2 = 0;
 
+            tau = (e_u*tau1 + tau2*d_u)*H_b_u;
+            sig = (sig1*e_u + sig2*d_u)*H_b_u;
 
-            closure = obj.Ji*obj.a * ( penalty_parameter_1*e_u' + penalty_parameter_2*F_u');
-            penalty = obj.Ji*obj.a * (-penalty_parameter_1*e_v' + penalty_parameter_2*F_v');
+            closure = obj.a*obj.Hi*( tau*e_u' + sig*d_u');
+            penalty = obj.a*obj.Hi*(-tau*e_v' + sig*d_v');
         end
 
         % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
         % The right boundary is considered the positive boundary
         %
         %  I -- the indecies of the boundary points in the grid matrix
-        function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I, scale_factor] = get_boundary_ops(obj, boundary)
+        function [e, d, gamm, H_b, I] = get_boundary_ops(obj, boundary)
 
             % gridMatrix = zeros(obj.m(2),obj.m(1));
             % gridMatrix(:) = 1:numel(gridMatrix);
@@ -298,58 +312,32 @@
             switch boundary
                 case 'w'
                     e = obj.e_w;
-                    d_n = obj.du_w;
-                    d_t = obj.dv_w;
-                    s = -1;
-
+                    d = obj.d_w;
+                    H_b = obj.H_w;
                     I = ind(1,:);
-                    coeff_n = obj.a11(I);
-                    coeff_t = obj.a12(I);
-                    scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2);
                 case 'e'
                     e = obj.e_e;
-                    d_n = obj.du_e;
-                    d_t = obj.dv_e;
-                    s = 1;
-
+                    d = obj.d_e;
+                    H_b = obj.H_e;
                     I = ind(end,:);
-                    coeff_n = obj.a11(I);
-                    coeff_t = obj.a12(I);
-                    scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2);
                 case 's'
                     e = obj.e_s;
-                    d_n = obj.dv_s;
-                    d_t = obj.du_s;
-                    s = -1;
-
+                    d = obj.d_s;
+                    H_b = obj.H_s;
                     I = ind(:,1)';
-                    coeff_n = obj.a22(I);
-                    coeff_t = obj.a12(I);
-                    scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2);
                 case 'n'
                     e = obj.e_n;
-                    d_n = obj.dv_n;
-                    d_t = obj.du_n;
-                    s = 1;
-
+                    d = obj.d_n;
+                    H_b = obj.H_n;
                     I = ind(:,end)';
-                    coeff_n = obj.a22(I);
-                    coeff_t = obj.a12(I);
-                    scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2);
                 otherwise
                     error('No such boundary: boundary = %s',boundary);
             end
 
             switch boundary
                 case {'w','e'}
-                    halfnorm_inv_n = obj.Hiu;
-                    halfnorm_inv_t = obj.Hiv;
-                    halfnorm_t = obj.Hv;
                     gamm = obj.gamm_u;
                 case {'s','n'}
-                    halfnorm_inv_n = obj.Hiv;
-                    halfnorm_inv_t = obj.Hiu;
-                    halfnorm_t = obj.Hu;
                     gamm = obj.gamm_v;
             end
         end
@@ -357,7 +345,5 @@
         function N = size(obj)
             N = prod(obj.m);
         end
-
-
     end
-end
\ No newline at end of file
+end
--- a/spdiag.m	Fri Sep 01 10:52:56 2017 +0200
+++ b/spdiag.m	Fri Sep 01 11:07:15 2017 +0200
@@ -1,5 +1,10 @@
 function A = spdiag(a,i)
     default_arg('i',0);
+
+    if isrow(a)
+        a = a';
+    end
+
     n = length(a)-abs(i);
     A = spdiags(a,i,n,n);
 end
\ No newline at end of file