changeset 1331:60c875c18de3 feature/D2_boundary_opt

Merge with feature/poroelastic for Elastic schemes
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 10 Mar 2022 16:54:26 +0100
parents 855871e0b852 (current diff) 412b8ceafbc6 (diff)
children 8e9df030a0a5
files +multiblock/DefCurvilinear.m +multiblock/DiffOp.m +parametrization/Curve.m +parametrization/dataSpline.m +sbp/D2VariableCompatible.m +scheme/Elastic2dCurvilinear.m +scheme/Elastic2dVariable.m diracDiscr.m diracDiscrTest.m
diffstat 49 files changed, 9192 insertions(+), 245 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+grid/Staggered.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,112 @@
+classdef Staggered < grid.Structured
+    properties
+        gridGroups  % Cell array of grid groups, each group is a cell array
+        nGroups % Number of grid groups
+        h      % Interior grid spacing
+        d      % Number of dimensions
+        logic  % Grid in logical domain, if any.
+    end
+
+    methods
+
+        % Accepts multiple grids and combines them into a staggered grid
+        % Each grid entry is a cell array of grids that store the same field
+        function obj = Staggered(d, varargin)
+            default_arg('d', 2);
+
+            obj.d = d;
+
+            obj.nGroups = length(varargin);
+            obj.gridGroups = cell(obj.nGroups, 1);
+            for i = 1:obj.nGroups
+                obj.gridGroups{i} = varargin{i};
+            end
+
+            obj.h = [];
+            obj.logic = [];
+        end
+
+        % N returns the number of points in the first grid group
+        function o = N(obj)
+            o = 0;
+            gs = obj.gridGroups{1};
+            for i = 1:length(gs)
+                o = o+gs{i}.N();
+            end
+        end
+
+        % D returns the spatial dimension of the grid
+        function o = D(obj)
+            o = obj.d;
+        end
+
+        % size returns a reference size
+        function m = size(obj)
+            m = obj.gridGroups{1}{1};
+        end
+
+        % points returns an n x 1 vector containing the coordinates for the first grid group.
+        function X = points(obj)
+            X = [];
+            gs = obj.gridGroups{1};
+            for i = 1:length(gs)
+                X = [X; gs{i}.points()];
+            end
+        end
+
+        % matrices returns a cell array with coordinates in matrix form.
+        % For 2d case these will have to be transposed to work with plotting routines.
+        function X = matrices(obj)
+            error('grid:Staggered1d:matrices', 'Not implemented')
+        end
+
+        function h = scaling(obj)
+            if isempty(obj.h)
+                error('grid:Staggered1d:NoScalingSet', 'No scaling set')
+            end
+
+            h = obj.h;
+        end
+
+        % Restricts the grid function gf on obj to the subgrid g.
+        % Only works for even multiples
+        function gf = restrictFunc(obj, gf, g)
+            error('grid:Staggered1d:NotImplemented','This method does not exist yet')
+        end
+
+        % Projects the grid function gf on obj to the grid g.
+        function gf = projectFunc(obj, gf, g)
+            error('grid:Staggered1d:NotImplemented','This method does not exist yet')
+        end
+
+        % Return the names of all boundaries in this grid.
+        function bs = getBoundaryNames(obj)
+            switch obj.d()
+                case 1
+                    bs = {'l', 'r'};
+                case 2
+                    bs = {'w', 'e', 's', 'n'};
+                case 3
+                    bs = {'w', 'e', 's', 'n', 'd', 'u'};
+                otherwise
+                    error('not implemented');
+            end
+        end
+
+        % Return coordinates for the given boundary
+        % gridGroup (scalar)    - grid group to return coordinates for
+        % subGrids (array)      - specifies which grids in the grid group to include (default: all grids in the grid group)
+        function X = getBoundary(obj, name, gridGroup, subGrids)
+
+            default_arg('gridGroup' , 1);
+            grids = obj.gridGroups{gridGroup};
+            default_arg('subGrids' , 1:numel(grids));
+
+            X = [];
+            for i = subGrids
+                X = [X; grids{i}.getBoundary(name)];
+            end
+        end
+
+    end
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+grid/evalOnStaggered.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,29 @@
+function gf = evalOnStaggered(g, f, gridGroup, subGrids)
+
+	default_arg('gridGroup', 1);
+
+	gf = [];
+
+	if isa(g, 'multiblock.Grid')
+
+		nSubGrids = numel(g.grids{1}.gridGroups{gridGroup});
+		default_arg('subGrids', 1:nSubGrids );
+
+		for i = 1:g.nBlocks()
+			for j = subGrids
+				gf = [gf; grid.evalOn(g.grids{i}.gridGroups{gridGroup}{j}, f)];
+			end
+		end
+
+	else
+
+		nSubGrids = numel(g.gridGroups{gridGroup});
+		default_arg('subGrids', 1:nSubGrids );
+
+		for j = subGrids
+			gf = [gf; grid.evalOn(g.grids{i}.gridGroups{gridGroup}{j}, f)];
+		end
+
+	end
+
+end
\ No newline at end of file
--- a/+grid/funcToMatrix.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+grid/funcToMatrix.m	Thu Mar 10 16:54:26 2022 +0100
@@ -1,5 +1,5 @@
 % Converts a gridfunction to a matrix
-% Takes a grid function and and a structured grid.
+% Takes a grid function and a structured grid.
 function F = funcToMatrix(g, gf)
     F = reshapeRowMaj(gf, g.size());
 end
\ No newline at end of file
--- a/+grid/funcToPlotMatrix.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+grid/funcToPlotMatrix.m	Thu Mar 10 16:54:26 2022 +0100
@@ -1,5 +1,5 @@
 % Converts a gridfunction to a plot matrix
-% Takes a grid function and and a structured grid.
+% Takes a grid function and a structured grid.
 function F = funcToPlotMatrix(g, gf)
     F = reshapeToPlotMatrix(gf, g.size());
 end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+grid/lebedev2d.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,57 @@
+% Creates a 2D staggered grid of Lebedev (checkerboard) type
+% Primal grid: equidistant with m points.
+% Dual grid: m + 1 points, h/2 spacing first point.
+% First grid line is "primal", 2nd is "dual", etc.
+%
+% Examples
+%   g = grid.Lebedev2d(m, xlims, ylims)
+%   g = grid.Lebedev2d([21, 31], {0,2}, {0,3})
+function g = lebedev2d(m, xlims, ylims, opSet)
+
+    default_arg('opSet', @(m,lim) sbp.D1StaggeredUpwind(m,lim,2));
+
+    if ~iscell(xlims) || numel(xlims) ~= 2
+        error('grid:lebedev2D:InvalidLimits','The limits should be cell arrays with 2 elements.');
+    end
+
+    if ~iscell(ylims) || numel(ylims) ~= 2
+        error('grid:lebedev2D:InvalidLimits','The limits should be cell arrays with 2 elements.');
+    end
+
+    if xlims{1} > xlims{2}
+        error('grid:lebedev2D:InvalidLimits','The elements of the limit must be increasing.');
+    end
+
+    if ylims{1} > ylims{2}
+        error('grid:lebedev2D:InvalidLimits','The elements of the limit must be increasing.');
+    end
+
+    opsX = opSet(m(1), xlims);
+    xp = opsX.x_primal;
+    xd = opsX.x_dual;
+
+    opsY = opSet(m(2), ylims);
+    yp = opsY.x_primal;
+    yd = opsY.x_dual;
+
+    % 4 Cartesian grids with spacing h
+    % 2 grids for displacements (u)
+    % 2 grids for stresses (sigma)
+    % Density needs to be evaluated on the u grids
+    % The stiffness tensor is evaluated on the sigma grids
+
+    gu1 = grid.Cartesian(xp, yp);
+    gu2 = grid.Cartesian(xd, yd);
+    gs1 = grid.Cartesian(xd, yp);
+    gs2 = grid.Cartesian(xp, yd);
+
+    gu = {gu1, gu2};
+    gs = {gs1, gs2};
+
+    dim = 2;
+    g = grid.Staggered(dim, gu, gs);
+
+end
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+grid/lebedev2dCurvilinear.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,46 @@
+% Creates a curvilinear 2d lebedev2d grid
+% over the logical domain xi_lim, eta_lim, ...
+% If all limits are ommited they are set to {0,1}.
+% Examples:
+%   g = grid.lebedev2dCurvilinear(mapping, [m_xi, m_eta])
+%   g = grid.lebedev2dCurvilinear(mapping, [m_xi, m_eta], xi_lim, eta_lim)
+%   g = grid.lebedev2dCurvilinear(mapping, [10, 15], {0,1}, {0,1})
+function g = lebedev2dCurvilinear(mapping, m, varargin)
+    if isempty(varargin)
+        varargin = repmat({{0,1}}, [1 length(m)]);
+    end
+
+    if length(m) ~= length(varargin)
+        error('grid:lebedev2d:NonMatchingParameters','The number of provided dimensions do not match.')
+    end
+
+    for i = 1:length(m)
+        if ~iscell(varargin{i}) || numel(varargin{i}) ~= 2
+           error('grid:lebedev2d:InvalidLimits','The limits should be cell arrays with 2 elements.');
+        end
+
+        if varargin{i}{1} > varargin{i}{2}
+            error('grid:lebedev2d:InvalidLimits','The elements of the limit must be increasing.');
+        end
+    end
+
+    g_logic = grid.lebedev2d(m, varargin{:});
+
+    gu1_logic = g_logic.gridGroups{1}{1};
+    gu2_logic = g_logic.gridGroups{1}{2};
+    gs1_logic = g_logic.gridGroups{2}{1};
+    gs2_logic = g_logic.gridGroups{2}{2};
+
+    gu1 = grid.Curvilinear(mapping, gu1_logic.x{1}, gu1_logic.x{2});
+    gu2 = grid.Curvilinear(mapping, gu2_logic.x{1}, gu2_logic.x{2});
+    gs1 = grid.Curvilinear(mapping, gs1_logic.x{1}, gs1_logic.x{2});
+    gs2 = grid.Curvilinear(mapping, gs2_logic.x{1}, gs2_logic.x{2});
+
+    gu = {gu1, gu2};
+    gs = {gs1, gs2};
+
+    dim = 2;
+    g = grid.Staggered(dim, gu, gs);
+
+    g.logic = g_logic;
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+grid/primalDual1D.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,30 @@
+% Creates a 1D staggered grid of dimension length(m).
+% over the interval xlims
+% Primal grid: equidistant with m points.
+% Dual grid: m + 1 points, h/2 spacing first point.
+% Examples
+%   g = grid.primal_dual_1D(m, xlim)
+%   g = grid.primal_dual_1D(11, {0,1})
+function [g_primal, g_dual] = primalDual1D(m, xlims)
+
+    if ~iscell(xlims) || numel(xlims) ~= 2
+        error('grid:primalDual1D:InvalidLimits','The limits should be cell arrays with 2 elements.');
+    end
+
+    if xlims{1} > xlims{2}
+        error('grid:primalDual1D:InvalidLimits','The elements of the limit must be increasing.');
+    end
+
+    xl = xlims{1};
+    xr = xlims{2};
+    h = (xr-xl)/(m-1);
+
+    % Primal grid
+    g_primal = grid.equidistant(m, xlims);
+    g_primal.h = h;
+
+    % Dual grid
+    x = [xl; linspace(xl+h/2, xr-h/2, m-1)'; xr];
+    g_dual = grid.Cartesian(x);
+    g_dual.h = h;
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+grid/primalDual1DTest.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,32 @@
+function tests = primalDual1DTest()
+    tests = functiontests(localfunctions);
+end
+
+
+function testErrorInvalidLimits(testCase)
+     in  = {
+        {10,{1}},
+        {10,[0,1]},
+        {10,{1,0}},
+    };
+
+    for i = 1:length(in)
+        testCase.verifyError(@()grid.primalDual1D(in{i}{:}),'grid:primalDual1D:InvalidLimits',sprintf('in(%d) = %s',i,toString(in{i})));
+    end
+end
+
+function testCompiles(testCase)
+    in  = {
+        {5, {0,1}},
+    };
+
+    out = {
+        {[0; 0.25; 0.5; 0.75; 1], [0; 0.125; 0.375; 0.625; 0.875; 1]},
+    };
+
+    for i = 1:length(in)
+        [gp, gd] = grid.primalDual1D(in{i}{:});
+        testCase.verifyEqual(gp.points(),out{i}{1});
+        testCase.verifyEqual(gd.points(),out{i}{2});
+    end
+end
--- a/+multiblock/DefCurvilinear.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+multiblock/DefCurvilinear.m	Thu Mar 10 16:54:26 2022 +0100
@@ -74,6 +74,18 @@
             g = multiblock.Grid(grids, obj.connections, obj.boundaryGroups);
         end
 
+        function g = getLebedevGrid(obj, varargin)
+            ms = obj.getGridSizes(varargin{:});
+
+            grids = cell(1, obj.nBlocks);
+            for i = 1:obj.nBlocks
+                % grids{i} = grid.equidistantCurvilinear(obj.blockMaps{i}.S, ms{i});
+                grids{i} = grid.lebedev2dCurvilinear(obj.blockMaps{i}.S, ms{i});
+            end
+
+            g = multiblock.Grid(grids, obj.connections, obj.boundaryGroups);
+        end
+
         function h = show(obj, label, gridLines, varargin)
             default_arg('label', 'name')
             default_arg('gridLines', false);
--- a/+multiblock/DiffOp.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+multiblock/DiffOp.m	Thu Mar 10 16:54:26 2022 +0100
@@ -129,19 +129,20 @@
 
         % Get a boundary operator specified by opName for the given boundary/BoundaryGroup
         function op = getBoundaryOperator(obj, opName, boundary)
+            blockmatrixDiv = obj.blockmatrixDiv{1};
 
             switch class(boundary)
                 case 'cell'
                     blockId = boundary{1};
                     localOp = obj.diffOps{blockId}.getBoundaryOperator(opName, boundary{2});
 
-                    div = {obj.blockmatrixDiv{1}, size(localOp,2)};
+                    div = {blockmatrixDiv, size(localOp,2)};
                     blockOp = blockmatrix.zero(div);
                     blockOp{blockId,1} = localOp;
                     op = blockmatrix.toMatrix(blockOp);
                     return
                 case 'multiblock.BoundaryGroup'
-                    op = sparse(size(obj.D,1),0);
+                    op = sparse(sum(blockmatrixDiv),0);
                     for i = 1:length(boundary)
                         op = [op, obj.getBoundaryOperator(opName, boundary{i})];
                     end
@@ -208,6 +209,57 @@
             error('not implemented')
         end
 
+        function penalties = interfaceForcing(obj, boundary, neighbour_boundary, type)
+            default_arg('type', []);
+            switch class(boundary)
+                case 'cell'
+                    penalties = obj.singleInterfaceForcing(boundary, neighbour_boundary, type);
+                case 'multiblock.BoundaryGroup'
+                    [n,m] = size(obj.D);
+                    penaltyZero = sparse(n,0);
+
+                    for i = 1:length(boundary)
+                        penaltyParts = obj.interfaceForcing(boundary{i}, neighbour_boundary{i}, type);
+
+                        % Initalize if this is the first boundary
+                        if i==1
+                            penalties = cell(numel(penaltyParts), 1);
+                            for j = 1:numel(penaltyParts)
+                                penalties{j} = penaltyZero;
+                            end
+                        end
+
+                        for j = 1:numel(penaltyParts)
+                            penalties{j} = [penalties{j}, penaltyParts{j}];
+                        end
+
+                    end
+                otherwise
+                    error('Unknown boundary indentifier')
+            end
+
+        end
+
+        function penalties = singleInterfaceForcing(obj, boundary, neighbour_boundary, type)
+            I = boundary{1};
+            b1 = boundary{2};
+
+            J = neighbour_boundary{1};
+            b2 = neighbour_boundary{2};
+
+            % Get local penalties
+            [~, ~, blockPenalties] = obj.diffOps{I}.interface(b1, obj.diffOps{J}, b2, type);
+            % [~, ~, blockPenalties2] = obj.diffOps{J}.interface(b2, b1, obj.diffOps{I});
+
+            % Expand to matrices for full domain.
+            n = numel(blockPenalties);
+            penalties = cell(n, 1);
+            for i = 1:n
+                penalties{i} = multiblock.local2globalPenalty(blockPenalties{i}, obj.blockmatrixDiv, I);
+                             % + multiblock.local2globalPenalty(blockPenalties2{i}, obj.blockmatrixDiv, J);
+            end
+        end
+
         % Size returns the number of degrees of freedom
         function N = size(obj)
             N = 0;
--- a/+multiblock/Grid.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+multiblock/Grid.m	Thu Mar 10 16:54:26 2022 +0100
@@ -132,6 +132,27 @@
 
         end
 
+        % Pads a grid function that lives on a subgrid with
+        % zeros and gives it the size that mathces obj.
+        function gf = expandFunc(obj, gfSub, subGridId)
+            nComponents = length(gfSub)/obj.grids{subGridId}.N();
+            nBlocks = numel(obj.grids);
+
+            % Create sparse block matrix
+            gfs = cell(nBlocks,1);
+            for i = 1:nBlocks
+                N = obj.grids{i}.N()*nComponents;
+                gfs{i} = sparse(N, 1);
+            end
+
+            % Insert local gf
+            gfs{subGridId} = gfSub;
+
+            % Convert cell to vector
+            gf = blockmatrix.toMatrix(gfs);
+
+        end
+
         % Find all non interface boundaries of all blocks.
         % Return their grid.boundaryIdentifiers in a cell array.
         function bs = getBoundaryNames(obj)
@@ -155,16 +176,16 @@
         end
 
         % Return coordinates for the given boundary/boundaryGroup
-        function b = getBoundary(obj, boundary)
+        function b = getBoundary(obj, boundary, varargin)
             switch class(boundary)
                 case 'cell'
                     I = boundary{1};
                     name = boundary{2};
-                    b = obj.grids{I}.getBoundary(name);
+                    b = obj.grids{I}.getBoundary(name, varargin{:});
                 case 'multiblock.BoundaryGroup'
                     b = sparse(0,obj.D());
                     for i = 1:length(boundary)
-                        b = [b; obj.getBoundary(boundary{i})];
+                        b = [b; obj.getBoundary(boundary{i}, varargin{:})];
                     end
                 otherwise
                     error('Unknown boundary indentifier')
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+multiblock/StaggeredSurface.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,97 @@
+classdef StaggeredSurface < handle
+    properties
+        grid
+        surfs
+        gridGroup
+        subGrid
+
+        ZData
+        CData
+
+    end
+
+    methods
+        function obj = StaggeredSurface(g, gf, gridGroup, subGrid)
+
+            default_arg('gridGroup', 1);
+            default_arg('subGrid', 1);
+
+            obj.grid = g;
+            obj.gridGroup = gridGroup;
+            obj.subGrid = subGrid;
+
+            % coords = obj.grid.points();
+            % X = obj.grid.funcToPlotMatrices(coords(:,1));
+            % Y = obj.grid.funcToPlotMatrices(coords(:,2));
+            % V = obj.grid.funcToPlotMatrices(gf);
+            X = {};
+            Y = {};
+            V = {};
+
+            holdState = ishold();
+            hold on
+
+            surfs = cell(1, obj.grid.nBlocks);
+            gfIndex = 1;
+            for i = 1:g.nBlocks()
+
+                gi = g.grids{i}.gridGroups{gridGroup}{subGrid};
+
+                X{i} = grid.funcToPlotMatrix(gi, gi.coords(:,1));
+                Y{i} = grid.funcToPlotMatrix(gi, gi.coords(:,2));
+
+                Ni = gi.N();
+                gf_i = gf(gfIndex:gfIndex+Ni-1);
+                V{i} = grid.funcToPlotMatrix(gi, gf_i);
+
+                surfs{i} = surf(X{i}, Y{i}, V{i});
+                gfIndex = gfIndex + Ni;
+            end
+
+            if holdState == false
+                hold off
+            end
+
+            obj.surfs = [surfs{:}];
+
+            obj.ZData = gf;
+            obj.CData = gf;
+        end
+
+        function set(obj, propertyName, propertyValue)
+            set(obj.surfs, propertyName, propertyValue);
+        end
+
+        function obj = set.ZData(obj, gf)
+            obj.ZData = gf;
+
+            % V = obj.grid.funcToPlotMatrices(gf);
+            gfIndex = 1;
+            for i = 1:obj.grid.nBlocks()
+                gi = obj.grid.grids{i}.gridGroups{obj.gridGroup}{obj.subGrid};
+                Ni = gi.N();
+                gf_i = gf(gfIndex:gfIndex+Ni-1);
+                Vi = grid.funcToPlotMatrix(gi, gf_i);
+                obj.surfs(i).ZData = Vi;
+
+                gfIndex = gfIndex + Ni;
+            end
+        end
+
+        function obj = set.CData(obj, gf)
+            obj.CData = gf;
+
+            % V = obj.grid.funcToPlotMatrices(gf);
+            gfIndex = 1;
+            for i = 1:obj.grid.nBlocks()
+                gi = obj.grid.grids{i}.gridGroups{obj.gridGroup}{obj.subGrid};
+                Ni = gi.N();
+                gf_i = gf(gfIndex:gfIndex+Ni-1);
+                Vi = grid.funcToPlotMatrix(gi, gf_i);
+                obj.surfs(i).CData = Vi;
+
+                gfIndex = gfIndex + Ni;
+            end
+        end
+    end
+end
Binary file +sbp/+implementations/coeffs_d2_variable_2.mat has changed
Binary file +sbp/+implementations/coeffs_d2_variable_4.mat has changed
Binary file +sbp/+implementations/coeffs_d2_variable_6.mat has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d1_staggered_upwind_2.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,73 @@
+function [xp,xm,Hp,Hm,HIp,HIm,Dp,Dm,Dpp,Dpm,Dmp,Dmm] = d1_staggered_upwind_2(n,L)
+
+assert(n-1 >= 6,'Not enough grid points');  
+
+np=n;
+nm=n+1;
+h = L/(n-1);
+
+
+%H- norm
+Hm_U=[0.88829e5 / 0.599299e6 0 0; 0 0.8056187e7 / 0.9588784e7 0; 0 0 0.9700117e7 / 0.9588784e7;];
+%H+ norm
+Hp_U=[0.7489557e7 / 0.19177568e8 0 0; 0 0.1386089e7 / 0.1198598e7 0; 0 0 0.18276939e8 / 0.19177568e8;];
+% Upper part of Qpp. Notice that the B matrix is not included here.
+% Qpp+Qpp^T=S/2,Qpp+Qpm^T=0 
+Qpp_U=[-0.1e1 / 0.32e2 0.12886609e8 / 0.19177568e8 -0.1349263e7 / 0.9588784e7; -0.10489413e8 / 0.19177568e8 -0.3e1 / 0.16e2 0.16482403e8 / 0.19177568e8; 0.187491e6 / 0.2397196e7 -0.9290815e7 / 0.19177568e8 -0.11e2 / 0.32e2;];
+% Upper part of Qmp. Notice that the B matrix is not included here.
+% Qmp+Qmp^T=S/2,Qmp+Qmm^T=0 
+Qmp_U=[-0.2e1 / 0.21e2 0.12495263e8 / 0.16780372e8 -0.7520839e7 / 0.50341116e8; -0.7700871e7 / 0.16780372e8 -0.31e2 / 0.112e3 0.57771939e8 / 0.67121488e8; 0.2726447e7 / 0.50341116e8 -0.31402783e8 / 0.67121488e8 -0.113e3 / 0.336e3;];
+% The staggered + operator, upper part. Notice that the B matrix is not included here.Qp+Qm^T=0
+Qp_U=[-0.801195e6 / 0.2397196e7 0.16507959e8 / 0.19177568e8 -0.509615e6 / 0.19177568e8; -0.219745e6 / 0.1198598e7 -0.2112943e7 / 0.2397196e7 0.2552433e7 / 0.2397196e7; 0.42087e5 / 0.2397196e7 0.395585e6 / 0.19177568e8 -0.19909849e8 / 0.19177568e8;];
+Hp=spdiags(ones(np,1),0,np,np);
+Hp(1:3,1:3)=Hp_U;
+Hp(np-2:np,np-2:np)=fliplr(flipud(Hp_U));
+Hp=Hp*h;
+HIp=inv(Hp);
+
+Hm=spdiags(ones(nm,1),0,nm,nm);
+Hm(1:3,1:3)=Hm_U;
+Hm(nm-2:nm,nm-2:nm)=fliplr(flipud(Hm_U));
+Hm=Hm*h;
+HIm=inv(Hm);
+
+Qpp=spdiags(repmat([-0.3e1 / 0.8e1 -0.3e1 / 0.8e1 0.7e1 / 0.8e1 -0.1e1 / 0.8e1;],[np,1]),-1:2,np,np);
+Qpp(1:3,1:3)=Qpp_U;
+Qpp(np-2:np,np-2:np)=flipud( fliplr(Qpp_U(1:3,1:3) ) )'; 
+
+Qpm=-Qpp';
+
+Qmp=spdiags(repmat([-0.3e1 / 0.8e1 -0.3e1 / 0.8e1 0.7e1 / 0.8e1 -0.1e1 / 0.8e1;],[nm,1]),-1:2,nm,nm);
+Qmp(1:3,1:3)=Qmp_U;
+Qmp(nm-2:nm,nm-2:nm)=flipud( fliplr(Qmp_U(1:3,1:3) ) )'; 
+
+Qmm=-Qmp';
+
+
+Bpp=spalloc(np,np,2);Bpp(1,1)=-1;Bpp(np,np)=1;
+Bmp=spalloc(nm,nm,2);Bmp(1,1)=-1;Bmp(nm,nm)=1;
+
+Dpp=HIp*(Qpp+1/2*Bpp) ;
+Dpm=HIp*(Qpm+1/2*Bpp) ;
+
+
+Dmp=HIm*(Qmp+1/2*Bmp) ;
+Dmm=HIm*(Qmm+1/2*Bmp) ;
+
+
+%%% Start with the staggered
+Qp=spdiags(repmat([-1 1],[np,1]),0:1,np,nm);
+Qp(1:3,1:3)=Qp_U;
+Qp(np-2:np,nm-2:nm)=flipud( fliplr(-Qp_U(1:3,1:3) ) ); 
+Qm=-Qp';
+
+Bp=spalloc(np,nm,2);Bp(1,1)=-1;Bp(np,nm)=1;
+Bm=Bp';
+
+Dp=HIp*(Qp+1/2*Bp) ;
+
+Dm=HIm*(Qm+1/2*Bm) ;
+
+% grids
+xp = h*[0:n]';
+xm = h*[0 1/2+0:n n]';  
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d1_staggered_upwind_4.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,76 @@
+function [xp,xm,Hp,Hm,HIp,HIm,Dp,Dm,Dpp,Dpm,Dmp,Dmm] = d1_staggered_upwind_4(n,L)
+
+assert(n-1 >= 8,'Not enough grid points');  
+
+np=n;
+nm=n+1;
+h = L/(n-1);
+
+
+%H- norm
+Hm_U=[0.91e2 / 0.720e3 0 0 0; 0 0.325e3 / 0.384e3 0 0; 0 0 0.595e3 / 0.576e3 0; 0 0 0 0.1909e4 / 0.1920e4;];
+%H+ norm
+Hp_U=[0.805e3 / 0.2304e4 0 0 0; 0 0.955e3 / 0.768e3 0 0; 0 0 0.677e3 / 0.768e3 0; 0 0 0 0.2363e4 / 0.2304e4;];
+% Upper part of Qpp. Notice that the B matrix is not included here.
+% Qpp+Qpp^T=S/2,Qpp+Qpm^T=0 
+Qpp_U=[-0.11e2 / 0.1536e4 0.1493e4 / 0.2304e4 -0.571e3 / 0.4608e4 -0.13e2 / 0.768e3; -0.697e3 / 0.1152e4 -0.121e3 / 0.1536e4 0.97e2 / 0.128e3 -0.473e3 / 0.4608e4; 0.373e3 / 0.4608e4 -0.139e3 / 0.256e3 -0.319e3 / 0.1536e4 0.1999e4 / 0.2304e4; 0.1e1 / 0.32e2 -0.121e3 / 0.4608e4 -0.277e3 / 0.576e3 -0.143e3 / 0.512e3;];
+
+% Upper part of Qmp. Notice that the B matrix is not included here.
+% Qmp+Qmp^T=S/2,Qmp+Qmm^T=0 
+Qmp_U=[-0.209e3 / 0.5970e4 0.13439e5 / 0.17910e5 -0.13831e5 / 0.47760e5 0.10637e5 / 0.143280e6; -0.44351e5 / 0.71640e5 -0.20999e5 / 0.152832e6 0.230347e6 / 0.229248e6 -0.70547e5 / 0.254720e6; 0.3217e4 / 0.15920e5 -0.86513e5 / 0.114624e6 -0.15125e5 / 0.76416e5 0.1087241e7 / 0.1146240e7; -0.1375e4 / 0.28656e5 0.36117e5 / 0.254720e6 -0.655601e6 / 0.1146240e7 -0.211717e6 / 0.764160e6;];
+
+% The staggered + operator, upper part. Notice that the B matrix is not included here.Qp+Qm^T=0
+Qp_U=[-0.338527e6 / 0.1004160e7 0.4197343e7 / 0.4819968e7 0.1423e4 / 0.803328e6 -0.854837e6 / 0.24099840e8; -0.520117e6 / 0.3012480e7 -0.492581e6 / 0.535552e6 0.2476673e7 / 0.2409984e7 0.520117e6 / 0.8033280e7; -0.50999e5 / 0.3012480e7 0.117943e6 / 0.1606656e7 -0.2476673e7 / 0.2409984e7 0.2712193e7 / 0.2677760e7; 0.26819e5 / 0.1004160e7 -0.117943e6 / 0.4819968e7 -0.1423e4 / 0.803328e6 -0.26119411e8 / 0.24099840e8;];
+
+Hp=spdiags(ones(np,1),0,np,np);
+Hp(1:4,1:4)=Hp_U;
+Hp(np-3:np,np-3:np)=fliplr(flipud(Hp_U));
+Hp=Hp*h;
+HIp=inv(Hp);
+
+Hm=spdiags(ones(nm,1),0,nm,nm);
+Hm(1:4,1:4)=Hm_U;
+Hm(nm-3:nm,nm-3:nm)=fliplr(flipud(Hm_U));
+Hm=Hm*h;
+HIm=inv(Hm);
+
+Qpp=spdiags(repmat([0.7e1 / 0.128e3 -0.67e2 / 0.128e3 -0.55e2 / 0.192e3 0.61e2 / 0.64e2 -0.29e2 / 0.128e3 0.11e2 / 0.384e3;],[np,1]),-2:3,np,np);
+Qpp(1:4,1:4)=Qpp_U;
+Qpp(np-3:np,np-3:np)=flipud( fliplr(Qpp_U(1:4,1:4) ) )'; 
+
+Qpm=-Qpp';
+
+Qmp=spdiags(repmat([0.7e1 / 0.128e3 -0.67e2 / 0.128e3 -0.55e2 / 0.192e3 0.61e2 / 0.64e2 -0.29e2 / 0.128e3 0.11e2 / 0.384e3;],[nm,1]),-2:3,nm,nm);
+Qmp(1:4,1:4)=Qmp_U;
+Qmp(nm-3:nm,nm-3:nm)=flipud( fliplr(Qmp_U(1:4,1:4) ) )'; 
+
+Qmm=-Qmp';
+
+
+Bpp=spalloc(np,np,2);Bpp(1,1)=-1;Bpp(np,np)=1;
+Bmp=spalloc(nm,nm,2);Bmp(1,1)=-1;Bmp(nm,nm)=1;
+
+Dpp=HIp*(Qpp+1/2*Bpp) ;
+Dpm=HIp*(Qpm+1/2*Bpp) ;
+
+
+Dmp=HIm*(Qmp+1/2*Bmp) ;
+Dmm=HIm*(Qmm+1/2*Bmp) ;
+
+
+%%% Start with the staggered
+Qp=spdiags(repmat([1/24 -9/8 9/8 -1/24],[np,1]),-1:2,np,nm);
+Qp(1:4,1:4)=Qp_U;
+Qp(np-3:np,nm-3:nm)=flipud( fliplr(-Qp_U(1:4,1:4) ) ); 
+Qm=-Qp';
+
+Bp=spalloc(np,nm,2);Bp(1,1)=-1;Bp(np,nm)=1;
+Bm=Bp';
+
+Dp=HIp*(Qp+1/2*Bp) ;
+
+Dm=HIm*(Qm+1/2*Bm) ;
+
+% grids
+xp = h*[0:n]';
+xm = h*[0 1/2+0:n n]';  
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d1_staggered_upwind_6.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,78 @@
+function [xp,xm,Hp,Hm,HIp,HIm,Dp,Dm,Dpp,Dpm,Dmp,Dmm] = d1_staggered_upwind_6(n,L)
+
+assert(n-1 >= 12,'Not enough grid points');  
+
+np=n;
+nm=n+1;
+h = L/(n-1);
+
+bp=6; % Number of boundary points
+
+
+%H- norm
+Hm_U=[0.18373e5 / 0.136080e6 0 0 0 0 0; 0 0.228247e6 / 0.276480e6 0 0 0 0; 0 0 0.219557e6 / 0.207360e6 0 0 0; 0 0 0 0.44867e5 / 0.46080e5 0 0; 0 0 0 0 0.487757e6 / 0.483840e6 0; 0 0 0 0 0 0.2485447e7 / 0.2488320e7;];
+%H+ norm
+Hp_U=[0.174529e6 / 0.552960e6 0 0 0 0 0; 0 0.769723e6 / 0.552960e6 0 0 0 0; 0 0 0.172613e6 / 0.276480e6 0 0 0; 0 0 0 0.343867e6 / 0.276480e6 0 0; 0 0 0 0 0.503237e6 / 0.552960e6 0; 0 0 0 0 0 0.560831e6 / 0.552960e6;];
+% Upper part of Qpp. Notice that the B matrix is not included here.
+% Qpp+Qpp^T=S/2,Qpp+Qpm^T=0 
+Qpp_U=[-0.11e2 / 0.12288e5 0.3248629e7 / 0.4976640e7 -0.742121e6 / 0.9953280e7 -0.173089e6 / 0.1658880e7 0.100627e6 / 0.9953280e7 0.263e3 / 0.15552e5; -0.3212989e7 / 0.4976640e7 -0.341e3 / 0.20480e5 0.488429e6 / 0.995328e6 0.2108717e7 / 0.9953280e7 0.5623e4 / 0.829440e6 -0.468779e6 / 0.9953280e7; 0.635201e6 / 0.9953280e7 -0.2135641e7 / 0.4976640e7 -0.2233e4 / 0.30720e5 0.298757e6 / 0.497664e6 -0.2148901e7 / 0.9953280e7 0.99581e5 / 0.1658880e7; 0.184969e6 / 0.1658880e7 -0.2671829e7 / 0.9953280e7 -0.1044721e7 / 0.2488320e7 -0.4697e4 / 0.30720e5 0.882599e6 / 0.995328e6 -0.2114063e7 / 0.9953280e7; -0.118447e6 / 0.9953280e7 0.15761e5 / 0.829440e6 0.915757e6 / 0.9953280e7 -0.2923243e7 / 0.4976640e7 -0.4279e4 / 0.20480e5 0.4614511e7 / 0.4976640e7; -0.263e3 / 0.15552e5 0.422447e6 / 0.9953280e7 -0.5185e4 / 0.331776e6 0.424727e6 / 0.9953280e7 -0.570779e6 / 0.995328e6 -0.2761e4 / 0.12288e5;];
+
+% Upper part of Qmp. Notice that the B matrix is not included here.
+% Qmp+Qmp^T=S/2,Qmp+Qmm^T=0 
+Qmp_U=[-0.6660404399e10 / 0.975680535935e12 0.42802131970831759e17 / 0.60695134779444480e17 -0.27241603626152813e17 / 0.91042702169166720e17 0.148772145985039e15 / 0.1264481974571760e16 -0.386865438537449e15 / 0.30347567389722240e17 -0.739491571084877e15 / 0.182085404338333440e18; -0.40937739835891039e17 / 0.60695134779444480e17 -0.20934998251893e14 / 0.570912496455680e15 0.3069347264824655e16 / 0.3082927480860672e16 -0.531249064089227e15 / 0.1541463740430336e16 0.6343721417240047e16 / 0.107902461830123520e18 0.194756943144697e15 / 0.138731736638730240e18; 0.24212381292051773e17 / 0.91042702169166720e17 -0.13932096926615587e17 / 0.15414637404303360e17 -0.22149140293797e14 / 0.285456248227840e15 0.443549615179363e15 / 0.481707418884480e15 -0.1531771257444041e16 / 0.5994581212784640e16 0.23579222779798361e17 / 0.416195209916190720e18; -0.119651391006031e15 / 0.1264481974571760e16 0.2061363806050549e16 / 0.7707318702151680e16 -0.355212104634871e15 / 0.481707418884480e15 -0.42909037900311e14 / 0.285456248227840e15 0.25466291778687943e17 / 0.26975615457530880e17 -0.3289076301679109e16 / 0.11560978053227520e17; 0.153994229603129e15 / 0.30347567389722240e17 -0.2655886084488631e16 / 0.107902461830123520e18 0.782300684927837e15 / 0.5994581212784640e16 -0.17511430871269903e17 / 0.26975615457530880e17 -0.413193098349471e15 / 0.1998193737594880e16 0.189367309285289755e18 / 0.194224431294222336e18; 0.894580992211517e15 / 0.182085404338333440e18 -0.209441083772219e15 / 0.27746347327746048e17 -0.4946149632449393e16 / 0.416195209916190720e18 0.334964642443661e15 / 0.2890244513306880e16 -0.604469352802317407e18 / 0.971122156471111680e18 -0.128172128502407e15 / 0.570912496455680e15;];
+
+% The staggered + operator, upper part. Notice that the B matrix is not included here.Qp+Qm^T=0
+Qp_U=[-0.34660470729017653729e20 / 0.113641961250214656000e21 0.351671379135966469961e21 / 0.415604886857927884800e21 0.1819680091728191503e19 / 0.103901221714481971200e21 -0.18252344147469061739e20 / 0.346337405714939904000e21 -0.18145368485798816351e20 / 0.727308552001373798400e21 0.2627410615589536403e19 / 0.138534962285975961600e21; -0.1606450873889019037e19 / 0.7576130750014310400e19 -0.8503979509850519441e19 / 0.9235664152398397440e19 0.2208731907526094393e19 / 0.2308916038099599360e19 0.1143962309827873891e19 / 0.7696386793665331200e19 0.1263616990270014071e19 / 0.16162412266697195520e20 -0.1402288892096389187e19 / 0.27706992457195192320e20; -0.502728075208147729e18 / 0.11364196125021465600e20 0.5831273443201206481e19 / 0.41560488685792788480e20 -0.9031420599281409001e19 / 0.10390122171448197120e20 0.29977986617775158621e20 / 0.34633740571493990400e20 -0.7995649008389734663e19 / 0.72730855200137379840e20 0.728315692435313537e18 / 0.41560488685792788480e20; 0.710308100786581369e18 / 0.11364196125021465600e20 -0.2317346723533341809e19 / 0.41560488685792788480e20 -0.1357359577229545879e19 / 0.10390122171448197120e20 -0.35124499190079631261e20 / 0.34633740571493990400e20 0.81675241511291974823e20 / 0.72730855200137379840e20 0.144034831596315317e18 / 0.13853496228597596160e20; 0.13360631165154733e17 / 0.841792305557145600e18 -0.875389186128426797e18 / 0.27706992457195192320e20 0.95493318392786453e17 / 0.6926748114298798080e19 0.1714625642820850967e19 / 0.23089160380995993600e20 -0.53371483072841696197e20 / 0.48487236800091586560e20 0.30168063964639488547e20 / 0.27706992457195192320e20; -0.1943232250834614071e19 / 0.113641961250214656000e21 0.8999269402554660119e19 / 0.415604886857927884800e21 0.1242786058815312817e19 / 0.103901221714481971200e21 -0.7480218714053301461e19 / 0.346337405714939904000e21 0.28468183824757664191e20 / 0.727308552001373798400e21 -0.476082521721490837529e21 / 0.415604886857927884800e21;];
+
+Hp=spdiags(ones(np,1),0,np,np);
+Hp(1:bp,1:bp)=Hp_U;
+Hp(np-bp+1:np,np-bp+1:np)=fliplr(flipud(Hp_U));
+Hp=Hp*h;
+HIp=inv(Hp);
+
+Hm=spdiags(ones(nm,1),0,nm,nm);
+Hm(1:bp,1:bp)=Hm_U;
+Hm(nm-bp+1:nm,nm-bp+1:nm)=fliplr(flipud(Hm_U));
+Hm=Hm*h;
+HIm=inv(Hm);
+
+Qpp=spdiags(repmat([-0.157e3 / 0.15360e5 0.537e3 / 0.5120e4 -0.3147e4 / 0.5120e4 -0.231e3 / 0.1024e4 0.999e3 / 0.1024e4 -0.1461e4 / 0.5120e4 0.949e3 / 0.15360e5 -0.33e2 / 0.5120e4;],[np,1]),-3:4,np,np);
+Qpp(1:bp,1:bp)=Qpp_U;
+Qpp(np-bp+1:np,np-bp+1:np)=flipud( fliplr(Qpp_U ) )'; 
+
+Qpm=-Qpp';
+
+Qmp=spdiags(repmat([-0.157e3 / 0.15360e5 0.537e3 / 0.5120e4 -0.3147e4 / 0.5120e4 -0.231e3 / 0.1024e4 0.999e3 / 0.1024e4 -0.1461e4 / 0.5120e4 0.949e3 / 0.15360e5 -0.33e2 / 0.5120e4;],[nm,1]),-3:4,nm,nm);
+Qmp(1:bp,1:bp)=Qmp_U;
+Qmp(nm-bp+1:nm,nm-bp+1:nm)=flipud( fliplr(Qmp_U ) )'; 
+
+Qmm=-Qmp';
+
+Bpp=spalloc(np,np,2);Bpp(1,1)=-1;Bpp(np,np)=1;
+Bmp=spalloc(nm,nm,2);Bmp(1,1)=-1;Bmp(nm,nm)=1;
+
+
+Dpp=HIp*(Qpp+1/2*Bpp) ;
+Dpm=HIp*(Qpm+1/2*Bpp) ;
+
+
+Dmp=HIm*(Qmp+1/2*Bmp) ;
+Dmm=HIm*(Qmm+1/2*Bmp) ;
+
+
+%%% Start with the staggered
+Qp=spdiags(repmat([-0.3e1 / 0.640e3 0.25e2 / 0.384e3 -0.75e2 / 0.64e2 0.75e2 / 0.64e2 -0.25e2 / 0.384e3 0.3e1 / 0.640e3],[np,1]),-2:3,np,nm);
+Qp(1:bp,1:bp)=Qp_U;
+Qp(np-bp+1:np,nm-bp+1:nm)=flipud( fliplr(-Qp_U ) ); 
+Qm=-Qp';
+
+Bp=spalloc(np,nm,2);Bp(1,1)=-1;Bp(np,nm)=1;
+Bm=Bp';
+
+Dp=HIp*(Qp+1/2*Bp) ;
+
+Dm=HIm*(Qm+1/2*Bm) ;
+
+% grids
+xp = h*[0:n]';
+xm = h*[0 1/2+0:n n]';  
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d1_staggered_upwind_8.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,82 @@
+function [xp,xm,Hp,Hm,HIp,HIm,Dp,Dm,Dpp,Dpm,Dmp,Dmm] = d1_staggered_upwind_8(n, L)
+
+assert(n-1 >= 12,'Not enough grid points');  
+
+np=n;
+nm=n+1;
+h = L/(n-1);
+
+bp=8; % Number of boundary points
+
+
+%H- norm
+Hm_U=[0.27058177e8 / 0.194594400e9 0 0 0 0 0 0 0; 0 0.378196601e9 / 0.464486400e9 0 0 0 0 0 0; 0 0 0.250683799e9 / 0.232243200e9 0 0 0 0 0; 0 0 0 0.48820787e8 / 0.51609600e8 0 0 0 0; 0 0 0 0 0.23953873e8 / 0.23224320e8 0 0 0; 0 0 0 0 0 0.55018021e8 / 0.55738368e8 0 0; 0 0 0 0 0 0 0.284772253e9 / 0.283852800e9 0; 0 0 0 0 0 0 0 0.6036097241e10 / 0.6038323200e10;];
+
+%H+ norm
+Hp_U=[0.273925927e9 / 0.928972800e9 0 0 0 0 0 0 0; 0 0.1417489391e10 / 0.928972800e9 0 0 0 0 0 0; 0 0 0.26528603e8 / 0.103219200e9 0 0 0 0 0; 0 0 0 0.66843235e8 / 0.37158912e8 0 0 0 0; 0 0 0 0 0.76542481e8 / 0.185794560e9 0 0 0; 0 0 0 0 0 0.132009637e9 / 0.103219200e9 0 0; 0 0 0 0 0 0 0.857580049e9 / 0.928972800e9 0; 0 0 0 0 0 0 0 0.937663193e9 / 0.928972800e9;];
+
+% Upper part of Qpp. Notice that the B matrix is not included here.
+% Qpp+Qpp^T=S/2,Qpp+Qpm^T=0 
+Qpp_U=[-0.5053e4 / 0.43253760e8 0.299126491231e12 / 0.442810368000e12 -0.562745123e9 / 0.8856207360e10 -0.59616938177e11 / 0.398529331200e12 -0.5489464381e10 / 0.177124147200e12 0.6994759151e10 / 0.88562073600e11 0.712609553e9 / 0.181149696000e12 -0.14167e5 / 0.998400e6; -0.74652297589e11 / 0.110702592000e12 -0.995441e6 / 0.302776320e9 0.662285893e9 / 0.2236416000e10 0.2364992837e10 / 0.5535129600e10 0.8893339297e10 / 0.49816166400e11 -0.2166314077e10 / 0.8945664000e10 -0.78813191e8 / 0.2952069120e10 0.88810243397e11 / 0.1992646656000e13; 0.16939159e8 / 0.276756480e9 -0.2302477691e10 / 0.8200192000e10 -0.197067e6 / 0.9175040e7 0.46740527413e11 / 0.88562073600e11 -0.4827794723e10 / 0.11070259200e11 0.155404199e9 / 0.1230028800e10 0.15110006581e11 / 0.295206912000e12 -0.2491856531e10 / 0.88562073600e11; 0.7568509969e10 / 0.49816166400e11 -0.19762404121e11 / 0.44281036800e11 -0.2554553593e10 / 0.5535129600e10 -0.19550057e8 / 0.302776320e9 0.145135201e9 / 0.210862080e9 0.1596117533e10 / 0.11070259200e11 0.104983477e9 / 0.3558297600e10 -0.1087937837e10 / 0.25303449600e11; 0.5282544031e10 / 0.177124147200e12 -0.131784830977e12 / 0.797058662400e12 0.8310607171e10 / 0.22140518400e11 -0.56309573e8 / 0.105431040e9 -0.36477607e8 / 0.302776320e9 0.57443289107e11 / 0.88562073600e11 -0.220576549e9 / 0.691891200e9 0.39942520697e11 / 0.398529331200e12; -0.1743516779e10 / 0.22140518400e11 0.7784403199e10 / 0.32800768000e11 -0.459036521e9 / 0.4920115200e10 -0.5749179391e10 / 0.22140518400e11 -0.562460513e9 / 0.1383782400e10 -0.1500741e7 / 0.9175040e7 0.70986504791e11 / 0.73801728000e11 -0.930160589e9 / 0.3406233600e10; -0.712609553e9 / 0.181149696000e12 0.180761e6 / 0.6589440e7 -0.18016744831e11 / 0.295206912000e12 0.18651112477e11 / 0.797058662400e12 0.7155507361e10 / 0.44281036800e11 -0.49358401541e11 / 0.73801728000e11 -0.55032223e8 / 0.302776320e9 0.38275518139e11 / 0.40255488000e11; 0.14167e5 / 0.998400e6 -0.88810243397e11 / 0.1992646656000e13 0.650307179e9 / 0.22140518400e11 0.474654619e9 / 0.16102195200e11 -0.7267828861e10 / 0.199264665600e12 0.42227833e8 / 0.425779200e9 -0.71245142351e11 / 0.110702592000e12 -0.7998899e7 / 0.43253760e8;];
+
+% Upper part of Qmp. Notice that the B matrix is not included here.
+% Qmp+Qmp^T=S/2,Qmp+Qmm^T=0 
+Qmp_U=[-0.92025012754706822244637e23 / 0.73350939131274317328275670e26 0.930302337374620084855601123690977e33 / 0.1359398284732080668181467336976000e34 -0.727851704787797291000113057457371e33 / 0.2718796569464161336362934673952000e34 0.7360201789777281105403766444579e31 / 0.90626552315472044545431155798400e32 0.13716157770579047943179985700303e32 / 0.543759313892832267272586934790400e33 -0.553550686983724599329589830113e30 / 0.21750372555713290690903477391616e32 0.39889728754596585193681401053e29 / 0.20596943708061828305779808136000e32 0.4597826214543803453588826224861e31 / 0.2718796569464161336362934673952000e34; -0.460817194517403953445488602736801e33 / 0.679699142366040334090733668488000e33 -0.2251237342833501172927156567e28 / 0.267062619272621870023659683840e30 0.190175037040902421814031988319053e33 / 0.202800676510147232549216572416000e33 -0.280264041304585424221475951435491e33 / 0.1081603608054118573595821719552000e34 -0.2948540748840639854083293613843e31 / 0.81120270604058893019686628966400e32 0.10373234521893519136055741251159e32 / 0.194688649449741343247247909519360e33 -0.391946441371315598560753809131e30 / 0.59488198442976521547770194575360e32 -0.15471439859462263133402977429037e32 / 0.6026077244872946338605292437504000e34; 0.702728186606917922841148808013121e33 / 0.2718796569464161336362934673952000e34 -0.738964213741742941634289388463587e33 / 0.811202706040588930196866289664000e33 -0.6938440904692701484464706797e28 / 0.267062619272621870023659683840e30 0.13587935221144065448123508546711e32 / 0.16900056375845602712434714368000e32 -0.398581023027193812136121833051e30 / 0.3244810824162355720787465158656e31 -0.4390487184318690815376655433561e31 / 0.486721623624353358118119773798400e33 0.39375020562052974775725982794643e32 / 0.5948819844297652154777019457536000e34 -0.337431206994896862016299739723e30 / 0.1054563517852765609255926176563200e34; -0.1626484714285090813572964936931e31 / 0.22656638078868011136357788949600e32 0.247081446636583523913555235517491e33 / 0.1081603608054118573595821719552000e34 -0.98606689532786656855690277893813e32 / 0.135200451006764821699477714944000e33 -0.54412910204947725598668603049e29 / 0.801187857817865610070979051520e30 0.44527159063104584858762191285733e32 / 0.54080180402705928679791085977600e32 -0.4170461618635408764831166558231e31 / 0.18541776138070604118785515192320e32 0.2733053052508781643445069010989e31 / 0.55081665224978260692379809792000e32 -0.62697761224771731704532896739409e32 / 0.7030423452351770728372841177088000e34; -0.16732447706243527499842078942603e32 / 0.543759313892832267272586934790400e33 0.166114324967929244010272382781e30 / 0.2897152521573531893560236748800e31 0.45101984053799299547057123965e29 / 0.811202706040588930196866289664e30 -0.17968772701532140224971787578029e32 / 0.27040090201352964339895542988800e32 -0.48635228792591105226576208151e29 / 0.400593928908932805035489525760e30 0.89480251714879473157102672858403e32 / 0.97344324724870671623623954759680e32 -0.42143863277048975845235502012773e32 / 0.148720496107441303869425486438400e33 0.4389611982769118812600028148913e31 / 0.52728175892638280462796308828160e32; 0.590475930631333482244268674627e30 / 0.21750372555713290690903477391616e32 -0.1702402353852012839500776925027e31 / 0.27812664207105906178178272788480e32 0.5538920825569170589993365115709e31 / 0.121680405906088339529529943449600e33 0.13866428236712167588433125984777e32 / 0.129792432966494228831498606346240e33 -0.16470253483258635888811378530287e32 / 0.24336081181217667905905988689920e32 -0.391812951622286986994545412081e30 / 0.2403563573453596830212937154560e31 0.345131812155051195787190432571781e33 / 0.356929190657859129286621167452160e33 -0.8126635967231661246920267342728147e34 / 0.25309524428466374622142228237516800e35; -0.88170259036818455465427409231e29 / 0.41193887416123656611559616272000e32 0.943459254925453305858100463659e30 / 0.118976396885953043095540389150720e33 -0.104249970715879362499981962934393e33 / 0.5948819844297652154777019457536000e34 0.78160374875076232344526852587e29 / 0.18360555074992753564126603264000e32 0.37536035579237342566706229296521e32 / 0.297440992214882607738850972876800e33 -0.240812609144054591374890622842541e33 / 0.356929190657859129286621167452160e33 -0.145390363516271219220036634153e30 / 0.801187857817865610070979051520e30 0.38093040928245760105862644889779897e35 / 0.38667328987934739006050626473984000e35; -0.4596580943680048141920105029111e31 / 0.2718796569464161336362934673952000e34 0.15262190991038620305994595494037e32 / 0.6026077244872946338605292437504000e34 0.1782508142749448850000523441843e31 / 0.1054563517852765609255926176563200e34 -0.33510338065544202178903991034341e32 / 0.7030423452351770728372841177088000e34 -0.8226959851063633384855147175189e31 / 0.421825407141106243702370470625280e33 0.3729744974003821244717412110773747e34 / 0.25309524428466374622142228237516800e35 -0.6554525408845613610278033864711443e34 / 0.9666832246983684751512656618496000e34 -0.49383212966905764275823531781e29 / 0.267062619272621870023659683840e30;];
+
+% The staggered + operator, upper part. Notice that the B matrix is not included here.Qp+Qm^T=0
+Qp_U=[-0.6661444046602902130086192779621746771e37 / 0.23342839720855518078613888837079040000e38 0.12367666586033683088530161144944922123649e41 / 0.14797137255429936031548004199961722880000e41 0.4395151478839780503265910147432452357e37 / 0.186518536833150454179176523528929280000e39 -0.87963490365651280757669626389462038003e38 / 0.1345194295948176002868000381814702080000e40 -0.224187853266917333808369723332131873619e39 / 0.5178998039400477611041801469986603008000e40 0.55314264508663245255306547445101748003e38 / 0.2959427451085987206309600839992344576000e40 0.232303691019191510116997121080032335473e39 / 0.7398568627714968015774002099980861440000e40 -0.2816079756494683118054172509551114287e37 / 0.182680706857159704093185237036564480000e39; -0.10353150194859080046224306922028068797e38 / 0.43350988053017390717425793554575360000e38 -0.41810120772068966379630018024826564868789e41 / 0.44391411766289808094644012599885168640000e41 0.14548989645937048285445132077600344947e38 / 0.16118885899161150361163403267932160000e38 0.1353060140543056426043612771323929599939e40 / 0.6341630252327115442092001799983595520000e40 0.52584560489710238297754746193308329991e38 / 0.317081512616355772104600089999179776000e39 -0.322880558646947920788817445027309369183e39 / 0.8878282353257961618928802519977033728000e40 -0.2523050363123545986203815545725359199053e40 / 0.22195705883144904047322006299942584320000e41 0.2171073153815036601208579021528549178587e40 / 0.44391411766289808094644012599885168640000e41; -0.891108828407068615176254357157902263e36 / 0.14450329351005796905808597851525120000e38 0.9207480733237809022786174965361787199767e40 / 0.44391411766289808094644012599885168640000e41 -0.42541158717297365539935073107511004261e38 / 0.62172845611050151393058841176309760000e38 0.3752589973871193536179209598104238527889e40 / 0.4932379085143312010516001399987240960000e40 -0.503978909830206767329311700636686423011e39 / 0.2219570588314490404732200629994258432000e40 -0.25729240076595732139825342259542295873e38 / 0.328825272342887467367733426665816064000e39 0.283553624900223723890865927423934504751e39 / 0.2466189542571656005258000699993620480000e40 -0.129077863120107719239717930927898530811e39 / 0.4035582887844528008604001145444106240000e40; 0.150348887575956035991597139943595613e36 / 0.2000814833216187263881190471749632000e37 -0.20271017027971837857434511014725441049e38 / 0.422775350155141029472800119998906368000e39 -0.28593401740189393456434271848012721991e38 / 0.87041983855470211950282377646833664000e38 -0.3107901953269564253446821657614993689969e40 / 0.2959427451085987206309600839992344576000e40 0.163990240717967340033770840655582198979e39 / 0.147971372554299360315480041999617228800e39 0.1282390462809880153203810439898877805771e40 / 0.5326969411954776971357281511986220236800e40 0.55264142141446425784998699697993554089e38 / 0.1479713725542993603154800419996172288000e40 -0.11464469241412665723941542481946601159e38 / 0.328825272342887467367733426665816064000e39; 0.523088046329055388999216632374482217e36 / 0.8670197610603478143485158710915072000e37 -0.1060078188350823496391913491020744512571e40 / 0.8878282353257961618928802519977033728000e40 0.2489758378222482566046953325470732791e37 / 0.87041983855470211950282377646833664000e38 0.2223322627542429729644405110485179851147e40 / 0.8878282353257961618928802519977033728000e40 -0.405229856535104846314030690968355556777e39 / 0.443914117662898080946440125998851686400e39 0.1490365162783652350291746570529147907183e40 / 0.1775656470651592323785760503995406745600e40 -0.768972334347761129534143069144613163467e39 / 0.4439141176628980809464401259988516864000e40 0.34866718651627637034229483614924933299e38 / 0.1268326050465423088418400359996719104000e40; -0.522920230014765612739540250860177277e36 / 0.14450329351005796905808597851525120000e38 0.1453599225900263767517831305438030179313e40 / 0.44391411766289808094644012599885168640000e41 0.39466073050115777575909309244731209107e38 / 0.435209919277351059751411888234168320000e39 -0.501532616891797921922210650058733239369e39 / 0.4932379085143312010516001399987240960000e40 -0.276688880738967796756224778348832938429e39 / 0.2219570588314490404732200629994258432000e40 -0.346414321340583244146983258114429082007e39 / 0.328825272342887467367733426665816064000e39 0.12835585968364300662881260070481636919e38 / 0.10676145205937904784666669696942080000e38 -0.823464330534329517579044232163467356639e39 / 0.44391411766289808094644012599885168640000e41; -0.52802811745049309885720368328150617e35 / 0.1688999534533145092886719229399040000e37 0.306081878756402097710283710502974342821e39 / 0.4932379085143312010516001399987240960000e40 -0.43281676756908448328630499995327205907e38 / 0.1305629757832053179254235664702504960000e40 -0.136777517026276610492513752852976312597e39 / 0.4932379085143312010516001399987240960000e40 0.7290267185112688983569547959866321207e37 / 0.246618954257165600525800069999362048000e39 0.351639553804386998900032061955116226307e39 / 0.3804978151396269265255201079990157312000e40 -0.2840607921448362125113163437018746783083e40 / 0.2466189542571656005258000699993620480000e40 0.1859197240206073478058984196606793676119e40 / 0.1644126361714437336838667133329080320000e40; 0.5412884950805861225701675068383948563e37 / 0.303456916371121735021980554882027520000e39 -0.1279848124286614098666833963684894093627e40 / 0.44391411766289808094644012599885168640000e41 0.17218770500911534891873213313315117e35 / 0.39564538116122823613764717112197120000e38 0.904771800018341402297740826650985365019e39 / 0.44391411766289808094644012599885168640000e41 0.65377500469171784914136353007658339737e38 / 0.15536994118201432833125404409959809024000e41 -0.211014619053462658139013021424372225649e39 / 0.8878282353257961618928802519977033728000e40 0.195325945159072852492812627815477159003e39 / 0.3170815126163557721046000899991797760000e40 -0.52260858238454846311625894178508086247499e41 / 0.44391411766289808094644012599885168640000e41;];
+
+Hp=spdiags(ones(np,1),0,np,np);
+Hp(1:bp,1:bp)=Hp_U;
+Hp(np-bp+1:np,np-bp+1:np)=fliplr(flipud(Hp_U));
+Hp=Hp*h;
+HIp=inv(Hp);
+
+Hm=spdiags(ones(nm,1),0,nm,nm);
+Hm(1:bp,1:bp)=Hm_U;
+Hm(nm-bp+1:nm,nm-bp+1:nm)=fliplr(flipud(Hm_U));
+Hm=Hm*h;
+HIm=inv(Hm);
+
+tt=[0.1447e4 / 0.688128e6 -0.17119e5 / 0.688128e6 0.8437e4 / 0.57344e5 -0.5543e4 / 0.8192e4 -0.15159e5 / 0.81920e5 0.16139e5 / 0.16384e5 -0.2649e4 / 0.8192e4 0.15649e5 / 0.172032e6 -0.3851e4 / 0.229376e6 0.5053e4 / 0.3440640e7;];
+
+Qpp=spdiags(repmat(tt,[np,1]),-4:5,np,np);
+Qpp(1:bp,1:bp)=Qpp_U;
+Qpp(np-bp+1:np,np-bp+1:np)=flipud( fliplr(Qpp_U ) )'; 
+
+Qpm=-Qpp';
+
+Qmp=spdiags(repmat(tt,[nm,1]),-4:5,nm,nm);
+Qmp(1:bp,1:bp)=Qmp_U;
+Qmp(nm-bp+1:nm,nm-bp+1:nm)=flipud( fliplr(Qmp_U ) )'; 
+
+Qmm=-Qmp';
+
+
+Bpp=spalloc(np,np,2);Bpp(1,1)=-1;Bpp(np,np)=1;
+Bmp=spalloc(nm,nm,2);Bmp(1,1)=-1;Bmp(nm,nm)=1;
+
+Dpp=HIp*(Qpp+1/2*Bpp) ;
+Dpm=HIp*(Qpm+1/2*Bpp) ;
+
+
+Dmp=HIm*(Qmp+1/2*Bmp) ;
+Dmm=HIm*(Qmm+1/2*Bmp) ;
+
+
+%%% Start with the staggered
+Qp=spdiags(repmat([0.5e1 / 0.7168e4 -0.49e2 / 0.5120e4 0.245e3 / 0.3072e4 -0.1225e4 / 0.1024e4 0.1225e4 / 0.1024e4 -0.245e3 / 0.3072e4 0.49e2 / 0.5120e4 -0.5e1 / 0.7168e4;],[np,1]),-3:4,np,nm);
+Qp(1:bp,1:bp)=Qp_U;
+Qp(np-bp+1:np,nm-bp+1:nm)=flipud( fliplr(-Qp_U ) ); 
+Qm=-Qp';
+
+Bp=spalloc(np,nm,2);Bp(1,1)=-1;Bp(np,nm)=1;
+Bm=Bp';
+
+Dp=HIp*(Qp+1/2*Bp) ;
+
+Dm=HIm*(Qm+1/2*Bm) ;
+
+% grids
+xp = h*[0:n]';
+xm = h*[0 1/2+0:n n]'; 
\ No newline at end of file
--- a/+sbp/+implementations/d2_variable_2.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+sbp/+implementations/d2_variable_2.m	Thu Mar 10 16:54:26 2022 +0100
@@ -27,7 +27,7 @@
     diags   = -1:1;
     stencil = [-1/2 0 1/2];
     D1 = stripeMatrix(stencil, diags, m);
-    
+
     D1(1,1)=-1;D1(1,2)=1;D1(m,m-1)=-1;D1(m,m)=1;
     D1(m,m-1)=-1;D1(m,m)=1;
     D1=D1/h;
@@ -40,7 +40,7 @@
     scheme_radius = (scheme_width-1)/2;
     r = (1+scheme_radius):(m-scheme_radius);
 
-    function D2 = D2_fun(c)
+    function [D2, B] = D2_fun(c)
 
         Mm1 = -c(r-1)/2 - c(r)/2;
         M0  =  c(r-1)/2 + c(r)   + c(r+1)/2;
@@ -54,6 +54,8 @@
         M=M/h;
 
         D2=HI*(-M-c(1)*e_l*d1_l'+c(m)*e_r*d1_r');
+        B = HI*M;
     end
     D2 = @D2_fun;
+
 end
\ No newline at end of file
--- a/+sbp/+implementations/d2_variable_4.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+sbp/+implementations/d2_variable_4.m	Thu Mar 10 16:54:26 2022 +0100
@@ -49,7 +49,7 @@
 
 
     N = m;
-    function D2 = D2_fun(c)
+    function [D2, B] = D2_fun(c)
         M = 78+(N-12)*5;
         %h = 1/(N-1);
 
@@ -131,6 +131,8 @@
             cols(40+(i-7)*5:44+(i-7)*5) = [i-2;i-1;i;i+1;i+2];
         end
         D2 = sparse(rows,cols,D2);
+
+        B = HI*( c(end)*e_r*d1_r' - c(1)*e_l*d1_l') - D2;
     end
     D2 = @D2_fun;
 end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d2_variable_hollow_2.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,56 @@
+function [H, HI, D1, D2, e_l, e_r, d1_l, d1_r] = d2_variable_hollow_2(m,h)
+
+    BP = 1;
+    if(m<2*BP)
+        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1) = 1/2;
+    Hv(m:m) = 1/2;
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:3) = 1/h*[-3/2 2 -1/2];
+    d1_r = -rot90(d1_l, 2);
+
+    % D1 operator
+    diags   = -1:1;
+    stencil = [-1/2 0 1/2];
+    D1 = stripeMatrix(stencil, diags, m);
+
+    D1(1,1)=-1;D1(1,2)=1;D1(m,m-1)=-1;D1(m,m)=1;
+    D1(m,m-1)=-1;D1(m,m)=1;
+    D1=D1/h;
+    %Q=H*D1 + 1/2*(e_1*e_1') - 1/2*(e_m*e_m');
+
+
+    nBP = 2;
+    M = sparse(m,m);
+    coeffs = load('sbplib/+sbp/+implementations/coeffs_d2_variable_2.mat');
+
+    function D2 = D2_fun(c)
+        M_l = zeros(nBP, coeffs.nBPC);
+        M_r = zeros(nBP, coeffs.nBPC);
+
+        for i=1:coeffs.nBPC
+            M_l = M_l + coeffs.C_l{i}*c(i);
+            M_r = M_r + coeffs.C_r{i}*c(m-coeffs.nBPC+i);
+        end
+
+        M(1:nBP, 1:coeffs.nBPC) = M_l;
+        M(m-nBP+1:m, m-coeffs.nBPC+1:m) = M_r;
+
+        D2 = M/h^2;
+    end
+    D2 = @D2_fun;
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d2_variable_hollow_4.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,72 @@
+function [H, HI, D1, D2, e_l, e_r, d1_l, d1_r] = d2_variable_hollow_4(m,h)
+
+    BP = 6;
+    if(m<2*BP)
+        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
+    end
+
+
+
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1:4) = [17/48 59/48 43/48 49/48];
+    Hv(m-3:m) = rot90(Hv(1:4),2);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:4) = 1/h*[-11/6 3 -3/2 1/3];
+    d1_r = -rot90(d1_l, 2);
+
+
+
+
+    S = d1_l*d1_l' + d1_r*d1_r';
+
+    stencil = [1/12 -2/3 0 2/3 -1/12];
+    diags = -2:2;
+
+    Q_U = [
+        0 0.59e2/0.96e2 -0.1e1/0.12e2 -0.1e1/0.32e2;
+        -0.59e2/0.96e2 0 0.59e2/0.96e2 0;
+        0.1e1/0.12e2 -0.59e2/0.96e2 0 0.59e2/0.96e2;
+        0.1e1/0.32e2 0 -0.59e2/0.96e2 0;
+    ];
+
+    Q = stripeMatrix(stencil, diags, m);
+    Q(1:4,1:4) = Q_U;
+    Q(m-3:m,m-3:m) = -rot90(Q_U, 2);
+
+    D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r');
+
+
+    % Second derivative
+    nBP = 6;
+    M = sparse(m,m);
+    coeffs = load('sbplib/+sbp/+implementations/coeffs_d2_variable_4.mat');
+
+    function D2 = D2_fun(c)
+        M_l = zeros(nBP, coeffs.nBPC);
+        M_r = zeros(nBP, coeffs.nBPC);
+
+        for i=1:coeffs.nBPC
+            M_l = M_l + coeffs.C_l{i}*c(i);
+            M_r = M_r + coeffs.C_r{i}*c(m-coeffs.nBPC+i);
+        end
+
+        M(1:nBP, 1:coeffs.nBPC) = M_l;
+        M(m-nBP+1:m, m-coeffs.nBPC+1:m) = M_r;
+
+        D2 = M/h^2;
+    end
+    D2 = @D2_fun;
+
+end
\ No newline at end of file
--- a/+sbp/+implementations/d4_variable_6.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+sbp/+implementations/d4_variable_6.m	Thu Mar 10 16:54:26 2022 +0100
@@ -85,7 +85,7 @@
     scheme_radius = (scheme_width-1)/2;
     r = (1+scheme_radius):(m-scheme_radius);
 
-    function D2 = D2_fun(c)
+    function [D2, B] = D2_fun(c)
 
         Mm3 =  c(r-2)/0.40e2 + c(r-1)/0.40e2 - 0.11e2/0.360e3 * c(r-3) - 0.11e2/0.360e3 * c(r);
         Mm2 =  c(r-3)/0.20e2 - 0.3e1/0.10e2 * c(r-1) + c(r+1)/0.20e2 + 0.7e1/0.40e2 * c(r) + 0.7e1/0.40e2 * c(r-2);
@@ -128,6 +128,7 @@
         M=M/h;
 
         D2 = HI*(-M - c(1)*e_l*d1_l' + c(m)*e_r*d1_r');
+        B = HI*M;
     end
     D2 = @D2_fun;
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d4_variable_hollow_6.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,126 @@
+function [H, HI, D1, D2, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_hollow_6(m,h)
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %%% 6:te ordn. SBP Finita differens         %%%
+    %%% operatorer med diagonal norm            %%%
+    %%% Extension to variable koeff             %%%
+    %%%                                         %%%
+    %%% H           (Normen)                    %%%
+    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
+    %%% D2          (approx andra derivatan)    %%%
+    %%% D2=HI*(R+C*D*S                          %%%
+    %%%                                         %%%
+    %%% R=-D1'*H*C*D1-RR                        %%%
+    %%%                                         %%%
+    %%% RR ?r dissipation)                      %%%
+    %%% Dissipationen uppbyggd av D4:           %%%
+    %%% DI=D4*B*H*D4                            %%%
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+    BP = 9;
+    if(m<2*BP)
+        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1:6) = [13649/43200,12013/8640,2711/4320,5359/4320,7877/8640, 43801/43200];
+    Hv(m-5:m) = rot90(Hv(1:6),2);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:5) = [-25/12, 4, -3, 4/3, -1/4]/h;
+    d1_r = -rot90(d1_l, 2);
+
+    d2_l = sparse(m,1);
+    d2_l(1:5) = [0.35e2/0.12e2 -0.26e2/0.3e1 0.19e2/0.2e1 -0.14e2/0.3e1 0.11e2/0.12e2;]/h^2;
+    d2_r = rot90(d2_l, 2);
+
+    d3_l = sparse(m,1);
+    d3_l(1:5) = [-5/2 9 -12 7 -3/2]/h^3;
+    d3_r = -rot90(d3_l, 2);
+
+
+    % First derivtive
+    x1=0.70127127127127;
+
+
+    D1=(1/60*diag(ones(m-3,1),3)-9/60*diag(ones(m-2,1),2)+45/60*diag(ones(m-1,1),1)-45/60*diag(ones(m-1,1),-1)+9/60*diag(ones(m-2,1),-2)-1/60*diag(ones(m-3,1),-3));
+
+
+
+    D1(1:6,1:9)=[-21600/13649, 43200/13649*x1-7624/40947, -172800/13649*x1+ ...
+    	     715489/81894, 259200/13649*x1-187917/13649, -172800/13649* ...
+    	     x1+735635/81894, 43200/13649*x1-89387/40947, 0, 0, 0; ...
+    	     -8640/12013*x1+7624/180195, 0, 86400/12013*x1-57139/12013, ...
+    	     -172800/12013*x1+745733/72078, 129600/12013*x1-91715/12013, ...
+    	     -34560/12013*x1+240569/120130, 0, 0, 0; ...
+             17280/2711*x1-715489/162660, -43200/2711*x1+57139/5422, 0, ...
+             86400/2711*x1-176839/8133, -86400/2711*x1+242111/10844, ...
+             25920/2711*x1-182261/27110, 0, 0, 0; ...
+             -25920/5359*x1+187917/53590, 86400/5359*x1-745733/64308, ...
+             -86400/5359*x1+176839/16077, 0, 43200/5359*x1-165041/32154, ...
+             -17280/5359*x1+710473/321540, 72/5359, 0, 0; ...
+             34560/7877*x1-147127/47262, -129600/7877*x1+91715/7877, ...
+             172800/7877*x1-242111/15754, -86400/7877*x1+165041/23631, ...
+             0, 8640/7877*x1, -1296/7877, 144/7877, 0; ...
+             -43200/43801*x1+89387/131403, 172800/43801*x1-240569/87602,...
+             -259200/43801*x1+182261/43801, 172800/43801*x1-710473/262806, ...
+             -43200/43801*x1, 0, 32400/43801, -6480/43801, 720/43801];
+    D1(m-5:m,m-8:m)=rot90( -D1(1:6,1:9),2);
+    D1=D1/h;
+
+
+    % Second derivative
+    nBP = 9;
+    M = sparse(m,m);
+    coeffs = load('sbplib/+sbp/+implementations/coeffs_d2_variable_6.mat');
+
+    function D2 = D2_fun(c)
+        M_l = zeros(nBP, coeffs.nBPC);
+        M_r = zeros(nBP, coeffs.nBPC);
+
+        for i=1:coeffs.nBPC
+            M_l = M_l + coeffs.C_l{i}*c(i);
+            M_r = M_r + coeffs.C_r{i}*c(m-coeffs.nBPC+i);
+        end
+
+        M(1:nBP, 1:coeffs.nBPC) = M_l;
+        M(m-nBP+1:m, m-coeffs.nBPC+1:m) = M_r;
+
+        D2 = M/h^2;
+    end
+    D2 = @D2_fun;
+
+    % Fourth derivative, 1th order accurate at first 8 boundary points (still
+    % yield 5th order convergence if stable: for example u_tt=-u_xxxx
+    stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240];
+    diags = -4:4;
+    M4 = stripeMatrix(stencil, diags, m);
+
+    M4_U = [
+        0.1394226315049e13/0.367201486080e12 -0.1137054563243e13/0.114750464400e12 0.16614189027367e14/0.1836007430400e13 -0.1104821700277e13/0.306001238400e12 0.1355771086763e13/0.1836007430400e13 -0.27818686453e11/0.459001857600e12 -0.40671054239e11/0.1836007430400e13 0.5442887371e10/0.306001238400e12;
+        -0.1137054563243e13/0.114750464400e12 0.70616795535409e14/0.2570410402560e13 -0.173266854731041e15/0.6426026006400e13 0.28938615291031e14/0.2570410402560e13 -0.146167361863e12/0.71400288960e11 0.2793470836571e13/0.12852052012800e14 0.6219558097e10/0.428401733760e12 -0.7313844559e10/0.166909766400e12;
+        0.16614189027367e14/0.1836007430400e13 -0.173266854731041e15/0.6426026006400e13 0.378613061504779e15/0.12852052012800e14 -0.9117069604217e13/0.642602600640e12 0.632177582849e12/0.233673672960e12 -0.1057776382577e13/0.6426026006400e13 0.443019868399e12/0.4284017337600e13 -0.3707981e7/0.2318191200e10;
+        -0.1104821700277e13/0.306001238400e12 0.28938615291031e14/0.2570410402560e13 -0.9117069604217e13/0.642602600640e12 0.5029150721885e13/0.514082080512e12 -0.5209119714341e13/0.1285205201280e13 0.12235427457469e14/0.12852052012800e14 -0.13731270505e11/0.64260260064e11 0.2933596129e10/0.40800165120e11;
+        0.1355771086763e13/0.1836007430400e13 -0.146167361863e12/0.71400288960e11 0.632177582849e12/0.233673672960e12 -0.5209119714341e13/0.1285205201280e13 0.14871726798559e14/0.2570410402560e13 -0.7504337615347e13/0.1606506501600e13 0.310830296467e12/0.171360693504e12 -0.55284274391e11/0.183600743040e12;
+        -0.27818686453e11/0.459001857600e12 0.2793470836571e13/0.12852052012800e14 -0.1057776382577e13/0.6426026006400e13 0.12235427457469e14/0.12852052012800e14 -0.7504337615347e13/0.1606506501600e13 0.106318657014853e15/0.12852052012800e14 -0.14432772918527e14/0.2142008668800e13 0.58102695589e11/0.22666758400e11;
+        -0.40671054239e11/0.1836007430400e13 0.6219558097e10/0.428401733760e12 0.443019868399e12/0.4284017337600e13 -0.13731270505e11/0.64260260064e11 0.310830296467e12/0.171360693504e12 -0.14432772918527e14/0.2142008668800e13 0.27102479467823e14/0.2570410402560e13 -0.1216032192203e13/0.153000619200e12;
+        0.5442887371e10/0.306001238400e12 -0.7313844559e10/0.166909766400e12 -0.3707981e7/0.2318191200e10 0.2933596129e10/0.40800165120e11 -0.55284274391e11/0.183600743040e12 0.58102695589e11/0.22666758400e11 -0.1216032192203e13/0.153000619200e12 0.20799922829107e14/0.1836007430400e13;
+    ];
+
+    M4(1:8,1:8) = M4_U;
+    M4(m-7:m,m-7:m) = rot90(  M4_U ,2 );
+    M4 = M4/h^3;
+
+
+
+    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1StaggeredUpwind.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,99 @@
+classdef D1StaggeredUpwind < sbp.OpSet
+    % Compatible staggered and upwind operators by Ken Mattsson and Ossian O'reilly
+    properties
+        % x_primal: "primal" grid with m points. Equidistant. Called Plus grid in Ossian's paper.
+        % x_dual: "dual" grid with m+1 points. Called Minus grid in Ossian's paper.
+
+        % D1_primal takes FROM dual grid TO primal grid
+        % D1_dual takes FROM primal grid TO dual grid
+
+        D1_primal % SBP operator approximating first derivative
+        D1_dual % SBP operator approximating first derivative
+
+        Dplus_primal  % Upwind operator on primal grid
+        Dminus_primal % Upwind operator on primal grid
+        Dplus_dual % Upwind operator on dual grid
+        Dminus_dual % Upwind operator on dual grid
+
+        H_primal % Norm matrix
+        H_dual % Norm matrix
+        H_primalI % H^-1
+        H_dualI % H^-1
+        e_primal_l % Left boundary operator
+        e_dual_l % Left boundary operator
+        e_primal_r % Right boundary operator
+        e_dual_r % Right boundary operator
+        m % Number of grid points.
+        m_primal % Number of grid points.
+        m_dual % Number of grid points.
+        h % Step size
+        x_primal % grid
+        x_dual % grid
+        x
+        borrowing % Struct with borrowing limits for different norm matrices
+    end
+
+    methods
+        function obj = D1StaggeredUpwind(m,lim,order)
+
+          xl = lim{1};
+          xr = lim{2};
+          L = xr-xl;
+          h = L/(m-1);
+
+          m_primal = m;
+          m_dual = m+1;
+
+          switch order
+          case 2
+            [~, ~, obj.H_primal, obj.H_dual,...
+            obj.H_primalI, obj.H_dualI,...
+            obj.D1_primal, obj.D1_dual, obj.Dplus_primal, obj.Dminus_primal,...
+            obj.Dplus_dual, obj.Dminus_dual] = sbp.implementations.d1_staggered_upwind_2(m, L);
+          case 4
+            [~, ~, obj.H_primal, obj.H_dual,...
+            obj.H_primalI, obj.H_dualI,...
+            obj.D1_primal, obj.D1_dual, obj.Dplus_primal, obj.Dminus_primal,...
+            obj.Dplus_dual, obj.Dminus_dual] = sbp.implementations.d1_staggered_upwind_4(m, L);
+          case 6
+            [~, ~, obj.H_primal, obj.H_dual,...
+            obj.H_primalI, obj.H_dualI,...
+            obj.D1_primal, obj.D1_dual, obj.Dplus_primal, obj.Dminus_primal,...
+            obj.Dplus_dual, obj.Dminus_dual] = sbp.implementations.d1_staggered_upwind_6(m, L);
+          case 8
+            [~, ~, obj.H_primal, obj.H_dual,...
+            obj.H_primalI, obj.H_dualI,...
+            obj.D1_primal, obj.D1_dual, obj.Dplus_primal, obj.Dminus_primal,...
+            obj.Dplus_dual, obj.Dminus_dual] = sbp.implementations.d1_staggered_upwind_8(m, L);
+          otherwise
+           error('Invalid operator order %d.',order);
+          end
+
+          obj.m = m;
+          obj.m_primal = m_primal;
+          obj.m_dual = m_dual;
+          obj.h = h;
+
+          obj.x_primal = linspace(xl, xr, m)';
+          obj.x_dual = [xl, linspace(xl+h/2, xr-h/2, m-1), xr]';
+
+          obj.e_primal_l = sparse(m_primal,1);
+          obj.e_primal_r = sparse(m_primal,1);
+          obj.e_primal_l(1) = 1;
+          obj.e_primal_r(m_primal) = 1;
+
+          obj.e_dual_l = sparse(m_dual,1);
+          obj.e_dual_r = sparse(m_dual,1);
+          obj.e_dual_l(1) = 1;
+          obj.e_dual_r(m_dual) = 1;
+
+          obj.borrowing = [];
+          obj.x = [];
+
+        end
+
+        function str = string(obj)
+            str = [class(obj) '_' num2str(obj.order)];
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D1UpwindCompatible.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,64 @@
+classdef D1UpwindCompatible < sbp.OpSet
+    properties
+        Dp, Dm % SBP operator approximating first derivative
+        H % Norm matrix
+        HI % H^-1
+        e_l % Left boundary operator
+        e_r % Right boundary operator
+        m % Number of grid points.
+        h % Step size
+        x % grid
+        borrowing % Struct with borrowing limits for different norm matrices
+    end
+
+    methods
+        function obj = D1UpwindCompatible(m,lim,order)
+
+            x_l = lim{1};
+            x_r = lim{2};
+            L = x_r-x_l;
+            obj.h = L/(m-1);
+            obj.x = linspace(x_l,x_r,m)';
+
+            ops = sbp.D2Standard(m, lim, order);
+            D1 = ops.D1;
+            H = ops.H;
+
+            obj.H = H;
+            obj.HI = inv(H);
+            obj.e_l = ops.e_l;
+            obj.e_r = ops.e_r;
+
+            switch order
+                case 2
+                    ops = sbp.D2Standard(m, lim, 2);
+                    Dp = D1 + obj.h^1*1/2*(H\ops.M);
+                    Dm = D1 - obj.h^1*1/2*(H\ops.M);
+                case 4
+                    ops = sbp.D4Variable(m, lim, 2);
+                    Dp = D1 - obj.h^3*1/12*(H\ops.M4);
+                    Dm = D1 + obj.h^3*1/12*(H\ops.M4);
+                otherwise
+                    error('Invalid operator order %d.',order);
+            end
+
+            obj.Dp = Dp;
+            obj.Dm = Dm;
+
+            obj.m = m;
+        	obj.borrowing = [];
+
+        end
+
+        function str = string(obj)
+            str = [class(obj) '_' num2str(obj.order)];
+        end
+    end
+
+
+end
+
+
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/D2VariableCompatibleHollow.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,81 @@
+classdef D2VariableCompatibleHollow < sbp.OpSet
+    properties
+        D1 % SBP operator approximating first derivative
+        H % Norm matrix
+        HI % H^-1
+        Q % Skew-symmetric matrix
+        e_l % Left boundary operator
+        e_r % Right boundary operator
+        D2 % SBP operator for second derivative
+        M % Norm matrix, second derivative
+        d1_l % Left boundary first derivative
+        d1_r % Right boundary first derivative
+        m % Number of grid points.
+        h % Step size
+        x % grid
+        borrowing % Struct with borrowing limits for different norm matrices
+    end
+
+    methods
+        function obj = D2VariableCompatibleHollow(m,lim,order)
+
+            x_l = lim{1};
+            x_r = lim{2};
+            L = x_r-x_l;
+            obj.h = L/(m-1);
+            obj.x = linspace(x_l,x_r,m)';
+
+            switch order
+
+                case 6
+
+                    [obj.H, obj.HI, obj.D1, D2, ...
+                    ~, obj.e_l, obj.e_r, ~, ~, ~, ~, ~,...
+                     d1_l, d1_r] = ...
+                        sbp.implementations.d4_variable_hollow_6(m, obj.h);
+
+                case 4
+                    [obj.H, obj.HI, obj.D1, D2, obj.e_l,...
+                        obj.e_r, d1_l, d1_r] = ...
+                        sbp.implementations.d2_variable_hollow_4(m,obj.h);
+                case 2
+                    [obj.H, obj.HI, obj.D1, D2, obj.e_l,...
+                        obj.e_r, d1_l, d1_r] = ...
+                        sbp.implementations.d2_variable_hollow_2(m,obj.h);
+
+                otherwise
+                    error('Invalid operator order %d.',order);
+            end
+            obj.borrowing.H11 = obj.H(1,1)/obj.h; % First element in H/h,
+            obj.borrowing.M.d1 = obj.H(1,1)/obj.h; % First element in H/h is borrowing also for M
+            obj.borrowing.R.delta_D = inf;
+            obj.m = m;
+            obj.M = [];
+
+
+            D1 = obj.D1;
+            e_r = obj.e_r;
+            e_l = obj.e_l;
+
+            % D2 = Hinv * (-M + br*er*d1r^T - bl*el*d1l^T);
+            % Replace d1' by e'*D1 in D2.
+            % D2_compatible = @(b) D2(b) - obj.HI*(b(m)*e_r*d1_r' - b(m)*e_r*e_r'*D1) ...
+            %                            + obj.HI*(b(1)*e_l*d1_l' - b(1)*e_l*e_l'*D1);
+
+            obj.D2 = D2;
+            obj.d1_l = (e_l'*D1)';
+            obj.d1_r = (e_r'*D1)';
+
+        end
+        function str = string(obj)
+            str = [class(obj) '_' num2str(obj.order)];
+        end
+    end
+
+
+end
+
+
+
+
+
--- a/+scheme/+bc/forcingSetup.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+scheme/+bc/forcingSetup.m	Thu Mar 10 16:54:26 2022 +0100
@@ -22,8 +22,14 @@
 
     [gridData, symbolicData] = parseAndSortData(bcs, penalties, diffOp);
 
-    % Setup penalty function
-    O = spzeros(size(diffOp),1);
+    if length(gridData) + length(symbolicData) == 0
+        S = [];
+    else
+        % Setup penalty function
+        O = spzeros(size(diffOp),1);
+        S = @S_fun;
+    end
+
     function v = S_fun(t)
         v = O;
         for i = 1:length(gridData)
@@ -36,7 +42,6 @@
 
         v = S_sign * v;
     end
-    S = @S_fun;
 end
 
 % Go through a cell array of boundary condition specifications and return cell arrays
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/+bc/forcingSetupStaggered.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,97 @@
+% Setup the forcing function for the given boundary conditions and data.
+% Each bc is a struct with the fields
+%  * type     -- Type of boundary condition
+%  * boundary -- Boundary identifier
+%  * data     -- A function_handle for a function which provides boundary data.(see below)
+% S_sign allows changing the sign of the function to put on different sides in the system of ODEs.
+%   default is 1, which the same side as the diffOp.
+% Returns a forcing function S.
+%
+% The boundary data function can either be a function of time or a function of time and space coordinates.
+% In the case where it only depends on time it should return the data as grid function for the boundary.
+% In the case where it also takes space coordinates the number of space coordinates should match the number of dimensions of the problem domain.
+% For example in the 2D case: f(t,x,y).
+
+function S = forcingSetupStaggered(diffOp, penalties, bcs, S_sign)
+    default_arg('S_sign', 1);
+
+    assertType(bcs, 'cell');
+    assertIsMember(S_sign, [1, -1]);
+
+    scheme.bc.verifyFormat(bcs, diffOp);
+
+    [gridData, symbolicData] = parseAndSortData(bcs, penalties, diffOp);
+
+    if length(gridData) + length(symbolicData) == 0
+        S = [];
+    else
+        % Setup penalty function
+        O = spzeros(size(diffOp),1);
+        S = @S_fun;
+    end
+
+    function v = S_fun(t)
+        v = O;
+        for i = 1:length(gridData)
+            v = v + gridData{i}.penalty*gridData{i}.func(t);
+        end
+
+        for i = 1:length(symbolicData)
+            v = v + symbolicData{i}.penalty*symbolicData{i}.func(t, symbolicData{i}.coords{:});
+        end
+
+        v = S_sign * v;
+    end
+end
+
+% Go through a cell array of boundary condition specifications and return cell arrays
+% of structs for grid and symbolic data.
+function [gridData, symbolicData] = parseAndSortData(bcs, penalties, diffOp)
+    gridData = {};
+    symbolicData = {};
+    for i = 1:length(bcs)
+        [ok, isSymbolic, data] = parseData(bcs{i}, penalties{i}, diffOp.grid);
+
+        if ~ok
+            continue % There was no data
+        end
+
+        if isSymbolic
+            symbolicData{end+1} = data;
+        else
+            gridData{end+1} = data;
+        end
+    end
+end
+
+function [ok, isSymbolic, dataStruct] = parseData(bc, penalty, grid)
+    if ~isfield(bc,'data') || isempty(bc.data)
+        isSymbolic = [];
+        dataStruct = struct();
+        ok = false;
+        return
+    end
+    ok = true;
+
+    nArg = nargin(bc.data);
+
+    if nArg > 1
+        % Symbolic data
+        isSymbolic = true;
+
+        switch bc.type{2}
+        case {'F','f','Free','free','traction','Traction','t','T'}
+            coord = grid.getBoundary(bc.boundary, 2);
+        otherwise
+            coord = grid.getBoundary(bc.boundary, 1);
+        end
+        dataStruct.penalty = penalty;
+        dataStruct.func = bc.data;
+        dataStruct.coords = num2cell(coord, 1);
+    else
+        % Grid data
+        isSymbolic = false;
+        dataStruct.penalty = penalty;
+        dataStruct.func = bc.data;
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Divergence.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,108 @@
+classdef Divergence < scheme.Scheme
+
+% Approximates the divergence
+% Interface and boundary condition methods are just dummies
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        D
+        D1
+        H
+    end
+
+    methods
+
+        function obj = Divergence(g, order, opSet)
+            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
+
+            dim = 2;
+
+            m = g.size();
+            m_tot = g.N();
+
+            h = g.scaling();
+            lim = g.lim;
+            if isempty(lim)
+                x = g.x;
+                lim = cell(length(x),1);
+                for i = 1:length(x)
+                    lim{i} = {min(x{i}), max(x{i})};
+                end
+            end
+
+            % 1D operators
+            ops = cell(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), lim{i}, order);
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+            end
+
+            %====== Assemble full operators ========
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            I_dim = speye(dim, dim);
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye(m_tot,m_tot);
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(I,e);
+            end
+
+            Div = sparse(m_tot, dim*m_tot);
+            for i = 1:dim
+                Div = Div + obj.D1{i}*E{i}';
+            end
+            obj.D = Div;
+            obj.H = [];
+            %=========================================%'
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc)
+            error('Not implemented')
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.2
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            error('Not implemented')
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end
--- a/+scheme/Elastic2dCurvilinear.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+scheme/Elastic2dCurvilinear.m	Thu Mar 10 16:54:26 2022 +0100
@@ -156,8 +156,8 @@
 
             b = cell(dim,dim);
             b{1,1} = y_eta./J;
-            b{1,2} = -x_eta./J;
-            b{2,1} = -y_xi./J;
+            b{2,1} = -x_eta./J;
+            b{1,2} = -y_xi./J;
             b{2,2} = x_xi./J;
 
             % Scale factors for boundary integrals
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dCurvilinearAnisotropic.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,818 @@
+classdef Elastic2dCurvilinearAnisotropic < scheme.Scheme
+
+% Discretizes the elastic wave equation:
+% rho u_{i,tt} = dj C_{ijkl} dk u_j
+% in curvilinear coordinates.
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+% Assumes fully compatible operators.
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for variable coefficients
+        J, Ji
+        RHO % Density
+        C   % Elastic stiffness tensor
+
+        D  % Total operator
+
+        K % Transformation gradient
+        Dx, Dy % Physical derivatives
+        sigma % Cell matrix of physical stress operators
+        n_w, n_e, n_s, n_n % Physical normals
+        tangent_w, tangent_e, tangent_s, tangent_n % Physical tangents
+
+        % Boundary operators in cell format, used for BC
+        T_w, T_e, T_s, T_n
+
+        % Traction operators
+        tau_w, tau_e, tau_s, tau_n      % Return vector field
+        tau1_w, tau1_e, tau1_s, tau1_n  % Return scalar field
+        tau2_w, tau2_e, tau2_s, tau2_n  % Return scalar field
+        tau_n_w, tau_n_e, tau_n_s, tau_n_n % Return scalar field
+        tau_t_w, tau_t_e, tau_t_s, tau_t_n % Return scalar field
+
+        % Inner products
+        H
+
+        % Boundary inner products (for scalar field)
+        H_w, H_e, H_s, H_n
+
+        % Surface Jacobian vectors
+        s_w, s_e, s_s, s_n
+
+        % Boundary restriction operators
+        e_w, e_e, e_s, e_n      % Act on vector field, return vector field at boundary
+        e1_w, e1_e, e1_s, e1_n  % Act on vector field, return scalar field at boundary
+        e2_w, e2_e, e2_s, e2_n  % Act on vector field, return scalar field at boundary
+        e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field
+        en_w, en_e, en_s, en_n  % Act on vector field, return normal component
+        et_w, et_e, et_s, et_n  % Act on vector field, return tangential component
+
+        % E{i}^T picks out component i
+        E
+
+        % Elastic2dVariableAnisotropic object for reference domain
+        refObj
+    end
+
+    methods
+
+        % The coefficients can either be function handles or grid functions
+        % optFlag -- if true, extra computations are performed, which may be helpful for optimization.
+        function obj = Elastic2dCurvilinearAnisotropic(g, order, rho, C, opSet, optFlag, hollow)
+            default_arg('hollow', false);
+            default_arg('rho', @(x,y) 0*x+1);
+            default_arg('opSet',{@sbp.D2VariableCompatible, @sbp.D2VariableCompatible});
+            default_arg('optFlag', false);
+            dim = 2;
+
+            C_default = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C_default{i,j,k,l} = @(x,y) 0*x ;
+                        end
+                    end
+                end
+            end
+            default_arg('C', C_default);
+
+            assert(isa(g, 'grid.Curvilinear'));
+
+            if isa(rho, 'function_handle')
+                rho = grid.evalOn(g, rho);
+            end
+
+            C_mat = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            if isa(C{i,j,k,l}, 'function_handle')
+                                C{i,j,k,l} = grid.evalOn(g, C{i,j,k,l});
+                            end
+                            C_mat{i,j,k,l} = spdiag(C{i,j,k,l});
+                        end
+                    end
+                end
+            end
+            obj.C = C_mat;
+
+            m = g.size();
+            m_tot = g.N();
+
+            % 1D operators
+            m_u = m(1);
+            m_v = m(2);
+            ops_u = opSet{1}(m_u, {0, 1}, order);
+            ops_v = opSet{2}(m_v, {0, 1}, order);
+
+            h_u = ops_u.h;
+            h_v = ops_v.h;
+
+            I_u = speye(m_u);
+            I_v = speye(m_v);
+
+            D1_u = ops_u.D1;
+            H_u =  ops_u.H;
+            Hi_u = ops_u.HI;
+            e_l_u = ops_u.e_l;
+            e_r_u = ops_u.e_r;
+            d1_l_u = ops_u.d1_l;
+            d1_r_u = ops_u.d1_r;
+
+            D1_v = ops_v.D1;
+            H_v =  ops_v.H;
+            Hi_v = ops_v.HI;
+            e_l_v = ops_v.e_l;
+            e_r_v = ops_v.e_r;
+            d1_l_v = ops_v.d1_l;
+            d1_r_v = ops_v.d1_r;
+
+
+            % Logical operators
+            Du = kr(D1_u,I_v);
+            Dv = kr(I_u,D1_v);
+
+            e_w  = kr(e_l_u,I_v);
+            e_e  = kr(e_r_u,I_v);
+            e_s  = kr(I_u,e_l_v);
+            e_n  = kr(I_u,e_r_v);
+
+            % Metric coefficients
+            coords = g.points();
+            x = coords(:,1);
+            y = coords(:,2);
+
+            x_u = Du*x;
+            x_v = Dv*x;
+            y_u = Du*y;
+            y_v = Dv*y;
+
+            J = x_u.*y_v - x_v.*y_u;
+
+            K = cell(dim, dim);
+            K{1,1} = y_v./J;
+            K{1,2} = -y_u./J;
+            K{2,1} = -x_v./J;
+            K{2,2} = x_u./J;
+            obj.K = K;
+
+            % Physical derivatives
+            obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv;
+            obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv;
+
+            % Wrap around Aniosotropic Cartesian
+            rho_tilde = J.*rho;
+
+            PHI = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            PHI{i,j,k,l} = 0*C{i,j,k,l};
+                            for m = 1:dim
+                                for n = 1:dim
+                                    PHI{i,j,k,l} = PHI{i,j,k,l} + J.*K{m,i}.*C{m,j,n,l}.*K{n,k};
+                                end
+                            end
+                        end
+                    end
+                end
+            end
+
+            gRef = grid.equidistant([m_u, m_v], {0,1}, {0,1});
+            refObj = scheme.Elastic2dVariableAnisotropic(gRef, order, rho_tilde, PHI, opSet, [], hollow);
+
+            %---- Set object properties ------
+            obj.RHO = spdiag(rho);
+
+            % Volume quadrature
+            obj.J = spdiag(J);
+            obj.Ji = spdiag(1./J);
+            obj.H = obj.J*kr(H_u,H_v);
+
+            % Boundary quadratures
+            s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2);
+            s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2);
+            s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2);
+            s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2);
+            obj.s_w = s_w;
+            obj.s_e = s_e;
+            obj.s_s = s_s;
+            obj.s_n = s_n;
+
+            obj.H_w = H_v*spdiag(s_w);
+            obj.H_e = H_v*spdiag(s_e);
+            obj.H_s = H_u*spdiag(s_s);
+            obj.H_n = H_u*spdiag(s_n);
+
+            % Restriction operators
+            obj.e_w = refObj.e_w;
+            obj.e_e = refObj.e_e;
+            obj.e_s = refObj.e_s;
+            obj.e_n = refObj.e_n;
+
+            % Adapt things from reference object
+            obj.D = refObj.D;
+            obj.E = refObj.E;
+
+            obj.e1_w = refObj.e1_w;
+            obj.e1_e = refObj.e1_e;
+            obj.e1_s = refObj.e1_s;
+            obj.e1_n = refObj.e1_n;
+
+            obj.e2_w = refObj.e2_w;
+            obj.e2_e = refObj.e2_e;
+            obj.e2_s = refObj.e2_s;
+            obj.e2_n = refObj.e2_n;
+
+            obj.e_scalar_w = refObj.e_scalar_w;
+            obj.e_scalar_e = refObj.e_scalar_e;
+            obj.e_scalar_s = refObj.e_scalar_s;
+            obj.e_scalar_n = refObj.e_scalar_n;
+
+            e1_w = obj.e1_w;
+            e1_e = obj.e1_e;
+            e1_s = obj.e1_s;
+            e1_n = obj.e1_n;
+
+            e2_w = obj.e2_w;
+            e2_e = obj.e2_e;
+            e2_s = obj.e2_s;
+            e2_n = obj.e2_n;
+
+            obj.tau1_w = (spdiag(1./s_w)*refObj.tau1_w')';
+            obj.tau1_e = (spdiag(1./s_e)*refObj.tau1_e')';
+            obj.tau1_s = (spdiag(1./s_s)*refObj.tau1_s')';
+            obj.tau1_n = (spdiag(1./s_n)*refObj.tau1_n')';
+
+            obj.tau2_w = (spdiag(1./s_w)*refObj.tau2_w')';
+            obj.tau2_e = (spdiag(1./s_e)*refObj.tau2_e')';
+            obj.tau2_s = (spdiag(1./s_s)*refObj.tau2_s')';
+            obj.tau2_n = (spdiag(1./s_n)*refObj.tau2_n')';
+
+            obj.tau_w = (refObj.e_w'*obj.e1_w*obj.tau1_w')' + (refObj.e_w'*obj.e2_w*obj.tau2_w')';
+            obj.tau_e = (refObj.e_e'*obj.e1_e*obj.tau1_e')' + (refObj.e_e'*obj.e2_e*obj.tau2_e')';
+            obj.tau_s = (refObj.e_s'*obj.e1_s*obj.tau1_s')' + (refObj.e_s'*obj.e2_s*obj.tau2_s')';
+            obj.tau_n = (refObj.e_n'*obj.e1_n*obj.tau1_n')' + (refObj.e_n'*obj.e2_n*obj.tau2_n')';
+
+            % Physical normals
+            e_w = obj.e_scalar_w;
+            e_e = obj.e_scalar_e;
+            e_s = obj.e_scalar_s;
+            e_n = obj.e_scalar_n;
+
+            e_w_vec = obj.e_w;
+            e_e_vec = obj.e_e;
+            e_s_vec = obj.e_s;
+            e_n_vec = obj.e_n;
+
+            nu_w = [-1,0];
+            nu_e = [1,0];
+            nu_s = [0,-1];
+            nu_n = [0,1];
+
+            obj.n_w = cell(2,1);
+            obj.n_e = cell(2,1);
+            obj.n_s = cell(2,1);
+            obj.n_n = cell(2,1);
+
+            % Compute normal and rotate (exactly!) 90 degrees counter-clockwise to get tangent
+            n_w_1 = (1./s_w).*e_w'*(J.*(K{1,1}*nu_w(1) + K{1,2}*nu_w(2)));
+            n_w_2 = (1./s_w).*e_w'*(J.*(K{2,1}*nu_w(1) + K{2,2}*nu_w(2)));
+            obj.n_w{1} = spdiag(n_w_1);
+            obj.n_w{2} = spdiag(n_w_2);
+            obj.tangent_w = {-obj.n_w{2}, obj.n_w{1}};
+
+            n_e_1 = (1./s_e).*e_e'*(J.*(K{1,1}*nu_e(1) + K{1,2}*nu_e(2)));
+            n_e_2 = (1./s_e).*e_e'*(J.*(K{2,1}*nu_e(1) + K{2,2}*nu_e(2)));
+            obj.n_e{1} = spdiag(n_e_1);
+            obj.n_e{2} = spdiag(n_e_2);
+            obj.tangent_e = {-obj.n_e{2}, obj.n_e{1}};
+
+            n_s_1 = (1./s_s).*e_s'*(J.*(K{1,1}*nu_s(1) + K{1,2}*nu_s(2)));
+            n_s_2 = (1./s_s).*e_s'*(J.*(K{2,1}*nu_s(1) + K{2,2}*nu_s(2)));
+            obj.n_s{1} = spdiag(n_s_1);
+            obj.n_s{2} = spdiag(n_s_2);
+            obj.tangent_s = {-obj.n_s{2}, obj.n_s{1}};
+
+            n_n_1 = (1./s_n).*e_n'*(J.*(K{1,1}*nu_n(1) + K{1,2}*nu_n(2)));
+            n_n_2 = (1./s_n).*e_n'*(J.*(K{2,1}*nu_n(1) + K{2,2}*nu_n(2)));
+            obj.n_n{1} = spdiag(n_n_1);
+            obj.n_n{2} = spdiag(n_n_2);
+            obj.tangent_n = {-obj.n_n{2}, obj.n_n{1}};
+
+            % Operators that extract the normal component
+            obj.en_w = (obj.n_w{1}*obj.e1_w' + obj.n_w{2}*obj.e2_w')';
+            obj.en_e = (obj.n_e{1}*obj.e1_e' + obj.n_e{2}*obj.e2_e')';
+            obj.en_s = (obj.n_s{1}*obj.e1_s' + obj.n_s{2}*obj.e2_s')';
+            obj.en_n = (obj.n_n{1}*obj.e1_n' + obj.n_n{2}*obj.e2_n')';
+
+            % Operators that extract the tangential component
+            obj.et_w = (obj.tangent_w{1}*obj.e1_w' + obj.tangent_w{2}*obj.e2_w')';
+            obj.et_e = (obj.tangent_e{1}*obj.e1_e' + obj.tangent_e{2}*obj.e2_e')';
+            obj.et_s = (obj.tangent_s{1}*obj.e1_s' + obj.tangent_s{2}*obj.e2_s')';
+            obj.et_n = (obj.tangent_n{1}*obj.e1_n' + obj.tangent_n{2}*obj.e2_n')';
+
+            obj.tau_n_w = (obj.n_w{1}*obj.tau1_w' + obj.n_w{2}*obj.tau2_w')';
+            obj.tau_n_e = (obj.n_e{1}*obj.tau1_e' + obj.n_e{2}*obj.tau2_e')';
+            obj.tau_n_s = (obj.n_s{1}*obj.tau1_s' + obj.n_s{2}*obj.tau2_s')';
+            obj.tau_n_n = (obj.n_n{1}*obj.tau1_n' + obj.n_n{2}*obj.tau2_n')';
+
+            obj.tau_t_w = (obj.tangent_w{1}*obj.tau1_w' + obj.tangent_w{2}*obj.tau2_w')';
+            obj.tau_t_e = (obj.tangent_e{1}*obj.tau1_e' + obj.tangent_e{2}*obj.tau2_e')';
+            obj.tau_t_s = (obj.tangent_s{1}*obj.tau1_s' + obj.tangent_s{2}*obj.tau2_s')';
+            obj.tau_t_n = (obj.tangent_n{1}*obj.tau1_n' + obj.tangent_n{2}*obj.tau2_n')';
+
+            % Stress operators
+            sigma = cell(dim, dim);
+            D1 = {obj.Dx, obj.Dy};
+            E = obj.E;
+            N = length(obj.RHO);
+            for i = 1:dim
+                for j = 1:dim
+                    sigma{i,j} = sparse(N,2*N);
+                    for k = 1:dim
+                        for l = 1:dim
+                            sigma{i,j} = sigma{i,j} + obj.C{i,j,k,l}*D1{k}*E{l}';
+                        end
+                    end
+                end
+            end
+            obj.sigma = sigma;
+
+            % Misc.
+            obj.refObj = refObj;
+            obj.m = refObj.m;
+            obj.h = refObj.h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+
+        % For displacement bc:
+        % bc = {comp, 'd', dComps},
+        % where
+        % dComps = vector of components with displacement BC. Default: 1:dim.
+        % In this way, we can specify one BC at a time even though the SATs depend on all BC.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.0);
+            assert( iscell(bc), 'The BC type must be a 2x1 or 3x1 cell array' );
+
+            component = bc{1};
+            type = bc{2};
+
+            switch component
+
+            % If conditions on Cartesian components
+            case {1,2}
+                [closure, penalty] = obj.refObj.boundary_condition(boundary, bc, tuning);
+
+            % If conditions on normal or tangential components
+            case {'n', 't'}
+
+                switch component
+                    case 'n'
+                        en = obj.getBoundaryOperator('en', boundary);
+                    case 't'
+                        en = obj.getBoundaryOperator('et', boundary);
+                end
+                e1 = obj.getBoundaryOperator('e1', boundary);
+
+                bc1 = {1, type};
+                [c1, p1] = obj.refObj.boundary_condition(boundary, bc1, tuning);
+                bc2 = {2, type};
+                c2 = obj.refObj.boundary_condition(boundary, bc2, tuning);
+
+                switch type
+                case {'F','f','Free','free','traction','Traction','t','T'}
+                    closure = en*en'*(c1+c2);
+                    penalty = en*e1'*p1;
+                case {'D','d','dirichlet','Dirichlet','displacement','Displacement'}
+                    [closure, penalty] = obj.displacementBCNormalTangential(boundary, bc, tuning);
+                end
+
+            end
+
+            switch type
+            case {'F','f','Free','free','traction','Traction','t','T'}
+
+                s = obj.(['s_' boundary]);
+                s = spdiag(s);
+                penalty = penalty*s;
+
+            end
+        end
+
+        function [closure, penalty] = displacementBCNormalTangential(obj, boundary, bc, tuning)
+            u = obj;
+
+            component = bc{1};
+            type = bc{2};
+
+            switch component
+            case 'n'
+                en      = u.getBoundaryOperator('en', boundary);
+                tau_n   = u.getBoundaryOperator('tau_n', boundary);
+                N       = u.getNormal(boundary);
+            case 't'
+                en      = u.getBoundaryOperator('et', boundary);
+                tau_n   = u.getBoundaryOperator('tau_t', boundary);
+                N       = u.getTangent(boundary);
+            end
+
+            % Operators
+            e       = u.getBoundaryOperatorForScalarField('e', boundary);
+            h11     = u.getBorrowing(boundary);
+            n      = u.getNormal(boundary);
+
+            C = u.C;
+            Ji = u.Ji;
+            s = spdiag(u.(['s_' boundary]));
+            m_tot = u.grid.N();
+
+            Hi      = u.E{1}*inv(u.H)*u.E{1}' + u.E{2}*inv(u.H)*u.E{2}';
+            RHOi    = u.E{1}*inv(u.RHO)*u.E{1}' + u.E{2}*inv(u.RHO)*u.E{2}';
+
+            H_gamma         = u.getBoundaryQuadratureForScalarField(boundary);
+            dim             = u.dim;
+
+            % Preallocate
+            [~, m_int] = size(H_gamma);
+            closure = sparse(dim*m_tot, dim*m_tot);
+            penalty = sparse(dim*m_tot, m_int);
+
+            % Term 1: The symmetric term
+            Z = sparse(m_int, m_int);
+            for i = 1:dim
+                for j = 1:dim
+                    for l = 1:dim
+                        for k = 1:dim
+                            Z = Z + n{i}*N{j}*e'*Ji*C{i,j,k,l}*e*n{k}*N{l};
+                        end
+                    end
+                end
+            end
+
+            Z = -tuning*dim*1/h11*s*Z;
+            closure = closure + en*H_gamma*Z*en';
+            penalty = penalty - en*H_gamma*Z;
+
+            % Term 2: The symmetrizing term
+            closure = closure + tau_n*H_gamma*en';
+            penalty = penalty - tau_n*H_gamma;
+
+            % Multiply all terms by inverse of density x quadraure
+            closure = RHOi*Hi*closure;
+            penalty = RHOi*Hi*penalty;
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.0
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty, forcingPenalties] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            defaultType.type = 'standard';
+            default_struct('type', defaultType);
+
+            forcingPenalties = [];
+
+            switch type.type
+            case 'standard'
+                [closure, penalty] = obj.refObj.interface(boundary,neighbour_scheme.refObj,neighbour_boundary,type);
+            case 'normalTangential'
+                [closure, penalty, forcingPenalties] = obj.interfaceNormalTangential(boundary,neighbour_scheme,neighbour_boundary,type);
+            case 'frictionalFault'
+                [closure, penalty, forcingPenalties] = obj.interfaceFrictionalFault(boundary,neighbour_scheme,neighbour_boundary,type);
+            end
+
+        end
+
+        function [closure, penalty, forcingPenalties] = interfaceFrictionalFault(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+
+            forcingPenalties = cell(1, 1);
+            u = obj;
+            v = neighbour_scheme;
+
+            % Operators, u side
+            e_u       = u.getBoundaryOperatorForScalarField('e', boundary);
+            en_u       = u.getBoundaryOperator('en', boundary);
+            tau_n_u     = u.getBoundaryOperator('tau_n', boundary);
+            h11_u     = u.getBorrowing(boundary);
+            n_u      = u.getNormal(boundary);
+
+            C_u = u.C;
+            Ji_u = u.Ji;
+            s_u = spdiag(u.(['s_' boundary]));
+            m_tot_u = u.grid.N();
+
+            % Operators, v side
+            e_v       = v.getBoundaryOperatorForScalarField('e', neighbour_boundary);
+            en_v       = v.getBoundaryOperator('en', neighbour_boundary);
+            tau_n_v     = v.getBoundaryOperator('tau_n', neighbour_boundary);
+            h11_v     = v.getBorrowing(neighbour_boundary);
+            n_v      = v.getNormal(neighbour_boundary);
+
+            C_v = v.C;
+            Ji_v = v.Ji;
+            s_v = spdiag(v.(['s_' neighbour_boundary]));
+            m_tot_v = v.grid.N();
+
+            % Operators that are only required for own domain
+            Hi      = u.E{1}*inv(u.H)*u.E{1}' + u.E{2}*inv(u.H)*u.E{2}';
+            RHOi    = u.E{1}*inv(u.RHO)*u.E{1}' + u.E{2}*inv(u.RHO)*u.E{2}';
+
+            % Shared operators
+            H_gamma         = u.getBoundaryQuadratureForScalarField(boundary);
+            dim             = u.dim;
+
+            % Preallocate
+            [~, m_int] = size(H_gamma);
+            closure = sparse(dim*m_tot_u, dim*m_tot_u);
+            penalty = sparse(dim*m_tot_u, dim*m_tot_v);
+
+            % Continuity of normal displacement, term 1: The symmetric term
+            Z_u = sparse(m_int, m_int);
+            Z_v = sparse(m_int, m_int);
+            for i = 1:dim
+                for j = 1:dim
+                    for l = 1:dim
+                        for k = 1:dim
+                            Z_u = Z_u + n_u{i}*n_u{j}*e_u'*Ji_u*C_u{i,j,k,l}*e_u*n_u{k}*n_u{l};
+                            Z_v = Z_v + n_v{i}*n_v{j}*e_v'*Ji_v*C_v{i,j,k,l}*e_v*n_v{k}*n_v{l};
+                        end
+                    end
+                end
+            end
+
+            Z = -tuning*dim*( 1/(4*h11_u)*s_u*Z_u + 1/(4*h11_v)*s_v*Z_v );
+            closure = closure + en_u*H_gamma*Z*en_u';
+            penalty = penalty + en_u*H_gamma*Z*en_v';
+
+            % Continuity of normal displacement, term 2: The symmetrizing term
+            closure = closure + 1/2*tau_n_u*H_gamma*en_u';
+            penalty = penalty + 1/2*tau_n_u*H_gamma*en_v';
+
+            % Continuity of normal traction
+            closure = closure - 1/2*en_u*H_gamma*tau_n_u';
+            penalty = penalty + 1/2*en_u*H_gamma*tau_n_v';
+            forcing_tau_n = 1/2*en_u*H_gamma;
+
+            % Multiply all normal component terms by inverse of density x quadraure
+            closure = RHOi*Hi*closure;
+            penalty = RHOi*Hi*penalty;
+            forcing_tau_n = RHOi*Hi*forcing_tau_n;
+
+            % ---- Tangential tractions are imposed just like traction BC ------
+            closure = closure + obj.boundary_condition(boundary, {'t', 't'});
+
+            forcingPenalties{1} = forcing_tau_n;
+
+        end
+
+        % Same interface conditions as in interfaceStandard, but imposed in the normal-tangential
+        % coordinate system. For the isotropic case, the components decouple nicely.
+        % The resulting scheme is not identical to that of interfaceStandard. This appears to be better.
+        function [closure, penalty, forcingPenalties, Zt] = interfaceNormalTangential(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+
+            forcingPenalties = cell(2, 1);
+            u = obj;
+            v = neighbour_scheme;
+
+            % Operators, u side
+            e_u         = u.getBoundaryOperatorForScalarField('e', boundary);
+            en_u        = u.getBoundaryOperator('en', boundary);
+            et_u        = u.getBoundaryOperator('et', boundary);
+            tau_n_u     = u.getBoundaryOperator('tau_n', boundary);
+            tau_t_u     = u.getBoundaryOperator('tau_t', boundary);
+            h11_u       = u.getBorrowing(boundary);
+            n_u         = u.getNormal(boundary);
+            t_u         = u.getTangent(boundary);
+
+            C_u = u.C;
+            Ji_u = u.Ji;
+            s_u = spdiag(u.(['s_' boundary]));
+            m_tot_u = u.grid.N();
+
+            % Operators, v side
+            e_v         = v.getBoundaryOperatorForScalarField('e', neighbour_boundary);
+            en_v        = v.getBoundaryOperator('en', neighbour_boundary);
+            et_v        = v.getBoundaryOperator('et', neighbour_boundary);
+            tau_n_v     = v.getBoundaryOperator('tau_n', neighbour_boundary);
+            tau_t_v     = v.getBoundaryOperator('tau_t', neighbour_boundary);
+            h11_v       = v.getBorrowing(neighbour_boundary);
+            n_v         = v.getNormal(neighbour_boundary);
+            t_v         = v.getTangent(neighbour_boundary);
+
+            C_v = v.C;
+            Ji_v = v.Ji;
+            s_v = spdiag(v.(['s_' neighbour_boundary]));
+            m_tot_v = v.grid.N();
+
+            % Operators that are only required for own domain
+            Hi      = u.E{1}*inv(u.H)*u.E{1}' + u.E{2}*inv(u.H)*u.E{2}';
+            RHOi    = u.E{1}*inv(u.RHO)*u.E{1}' + u.E{2}*inv(u.RHO)*u.E{2}';
+
+            % Shared operators
+            H_gamma         = u.getBoundaryQuadratureForScalarField(boundary);
+            dim             = u.dim;
+
+            % Preallocate
+            [~, m_int] = size(H_gamma);
+            closure = sparse(dim*m_tot_u, dim*m_tot_u);
+            penalty = sparse(dim*m_tot_u, dim*m_tot_v);
+
+            % -- Continuity of displacement, term 1: The symmetric term ---
+            Zn_u = sparse(m_int, m_int);
+            Zn_v = sparse(m_int, m_int);
+            Zt_u = sparse(m_int, m_int);
+            Zt_v = sparse(m_int, m_int);
+            for i = 1:dim
+                for j = 1:dim
+                    for l = 1:dim
+                        for k = 1:dim
+                            % Penalty strength for normal component
+                            Zn_u = Zn_u + n_u{i}*n_u{j}*e_u'*Ji_u*C_u{i,j,k,l}*e_u*n_u{k}*n_u{l};
+                            Zn_v = Zn_v + n_v{i}*n_v{j}*e_v'*Ji_v*C_v{i,j,k,l}*e_v*n_v{k}*n_v{l};
+
+                            % Penalty strength for tangential component
+                            Zt_u = Zt_u + n_u{i}*t_u{j}*e_u'*Ji_u*C_u{i,j,k,l}*e_u*n_u{k}*t_u{l};
+                            Zt_v = Zt_v + n_v{i}*t_v{j}*e_v'*Ji_v*C_v{i,j,k,l}*e_v*n_v{k}*t_v{l};
+                        end
+                    end
+                end
+            end
+
+            Zn = -tuning*dim*( 1/(4*h11_u)*s_u*Zn_u + 1/(4*h11_v)*s_v*Zn_v );
+            Zt = -tuning*dim*( 1/(4*h11_u)*s_u*Zt_u + 1/(4*h11_v)*s_v*Zt_v );
+
+            % Continuity of normal component
+            closure = closure + en_u*H_gamma*Zn*en_u';
+            penalty = penalty + en_u*H_gamma*Zn*en_v';
+            forcing_u_n = -en_u*H_gamma*Zn;
+
+            % Continuity of tangential component
+            closure = closure + et_u*H_gamma*Zt*et_u';
+            penalty = penalty + et_u*H_gamma*Zt*et_v';
+            forcing_u_t = -et_u*H_gamma*Zt;
+            %------------------------------------------------------------------
+
+            % --- Continuity of displacement, term 2: The symmetrizing term
+
+            % Continuity of normal displacement
+            closure = closure + 1/2*tau_n_u*H_gamma*en_u';
+            penalty = penalty + 1/2*tau_n_u*H_gamma*en_v';
+            forcing_u_n = forcing_u_n - 1/2*tau_n_u*H_gamma;
+
+            % Continuity of tangential displacement
+            closure = closure + 1/2*tau_t_u*H_gamma*et_u';
+            penalty = penalty + 1/2*tau_t_u*H_gamma*et_v';
+            forcing_u_t = forcing_u_t - 1/2*tau_t_u*H_gamma;
+            % ------------------------------------------------------------------
+
+            % --- Continuity of tractions -----------------------------
+
+            % Continuity of normal traction
+            closure = closure - 1/2*en_u*H_gamma*tau_n_u';
+            penalty = penalty + 1/2*en_u*H_gamma*tau_n_v';
+
+            % Continuity of tangential traction
+            closure = closure - 1/2*et_u*H_gamma*tau_t_u';
+            penalty = penalty + 1/2*et_u*H_gamma*tau_t_v';
+            %--------------------------------------------------------------------
+
+            % Multiply all terms by inverse of density x quadraure
+            closure = RHOi*Hi*closure;
+            penalty = RHOi*Hi*penalty;
+            forcing_u_n = RHOi*Hi*forcing_u_n;
+            forcing_u_t = RHOi*Hi*forcing_u_t;
+
+            forcingPenalties{1} = forcing_u_n;
+            forcingPenalties{2} = forcing_u_t;
+
+        end
+
+
+        % Returns h11 for the boundary specified by the string boundary.
+        % op -- string
+        function h11 = getBorrowing(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case {'w','e'}
+                h11 = obj.refObj.h11{1};
+            case {'s', 'n'}
+                h11 = obj.refObj.h11{2};
+            end
+        end
+
+        % Returns the outward unit normal vector for the boundary specified by the string boundary.
+        % n is a cell of diagonal matrices for each normal component, n{1} = n_1, n{2} = n_2.
+        function n = getNormal(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            n = obj.(['n_' boundary]);
+        end
+
+        % Returns the unit tangent vector for the boundary specified by the string boundary.
+        % t is a cell of diagonal matrices for each normal component, t{1} = t_1, t{2} = t_2.
+        function t = getTangent(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            t = obj.(['tangent_' boundary]);
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2', 'en', 'et', 'tau_n', 'tau_t'})
+
+            o = obj.([op, '_', boundary]);
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e'})
+
+            switch op
+
+                case 'e'
+                    o = obj.(['e_scalar', '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary unknowns
+        %
+        % boundary -- string
+        function H = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
+            I_dim = speye(obj.dim, obj.dim);
+            H = kron(H, I_dim);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dCurvilinearAnisotropicUpwind.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,464 @@
+classdef Elastic2dCurvilinearAnisotropicUpwind < scheme.Scheme
+
+% Discretizes the elastic wave equation:
+% rho u_{i,tt} = dj C_{ijkl} dk u_j
+% in curvilinear coordinates.
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+% Assumes fully compatible operators.
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for variable coefficients
+        J, Ji
+        RHO % Density
+        C   % Elastic stiffness tensor
+
+        D  % Total operator
+
+        Dx, Dy % Physical derivatives
+        sigma % Cell matrix of physical stress operators
+        n_w, n_e, n_s, n_n % Physical normals
+
+        % Boundary operators in cell format, used for BC
+        T_w, T_e, T_s, T_n
+
+        % Traction operators
+        tau_w, tau_e, tau_s, tau_n      % Return vector field
+        tau1_w, tau1_e, tau1_s, tau1_n  % Return scalar field
+        tau2_w, tau2_e, tau2_s, tau2_n  % Return scalar field
+
+        % Inner products
+        H
+
+        % Boundary inner products (for scalar field)
+        H_w, H_e, H_s, H_n
+
+        % Surface Jacobian vectors
+        s_w, s_e, s_s, s_n
+
+        % Boundary restriction operators
+        e_w, e_e, e_s, e_n      % Act on vector field, return vector field at boundary
+        e1_w, e1_e, e1_s, e1_n  % Act on vector field, return scalar field at boundary
+        e2_w, e2_e, e2_s, e2_n  % Act on vector field, return scalar field at boundary
+        e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field
+        en_w, en_e, en_s, en_n  % Act on vector field, return normal component
+
+        % E{i}^T picks out component i
+        E
+
+        % Elastic2dVariableAnisotropic object for reference domain
+        refObj
+    end
+
+    methods
+
+        % The coefficients can either be function handles or grid functions
+        % optFlag -- if true, extra computations are performed, which may be helpful for optimization.
+        function obj = Elastic2dCurvilinearAnisotropicUpwind(g, order, rho, C, opSet, optFlag)
+            default_arg('rho', @(x,y) 0*x+1);
+            default_arg('opSet',{@sbp.D1Upwind, @sbp.D1Upwind});
+            default_arg('optFlag', false);
+            dim = 2;
+
+            C_default = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C_default{i,j,k,l} = @(x,y) 0*x;
+                        end
+                    end
+                end
+            end
+            default_arg('C', C_default);
+
+            assert(isa(g, 'grid.Curvilinear'));
+
+            if isa(rho, 'function_handle')
+                rho = grid.evalOn(g, rho);
+            end
+
+            C_mat = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            if isa(C{i,j,k,l}, 'function_handle')
+                                C{i,j,k,l} = grid.evalOn(g, C{i,j,k,l});
+                            end
+                            C_mat{i,j,k,l} = spdiag(C{i,j,k,l});
+                        end
+                    end
+                end
+            end
+            obj.C = C_mat;
+
+            m = g.size();
+            m_tot = g.N();
+
+            % 1D operators
+            opSetMetric = {@sbp.D2VariableCompatible, @sbp.D2VariableCompatible};
+            orderMetric = ceil(order/2)*2;
+            m_u = m(1);
+            m_v = m(2);
+            ops_u = opSetMetric{1}(m_u, {0, 1}, orderMetric);
+            ops_v = opSetMetric{2}(m_v, {0, 1}, orderMetric);
+
+            h_u = ops_u.h;
+            h_v = ops_v.h;
+
+            I_u = speye(m_u);
+            I_v = speye(m_v);
+
+            D1_u = ops_u.D1;
+            H_u =  ops_u.H;
+            Hi_u = ops_u.HI;
+            e_l_u = ops_u.e_l;
+            e_r_u = ops_u.e_r;
+            d1_l_u = ops_u.d1_l;
+            d1_r_u = ops_u.d1_r;
+
+            D1_v = ops_v.D1;
+            H_v =  ops_v.H;
+            Hi_v = ops_v.HI;
+            e_l_v = ops_v.e_l;
+            e_r_v = ops_v.e_r;
+            d1_l_v = ops_v.d1_l;
+            d1_r_v = ops_v.d1_r;
+
+
+            % Logical operators
+            Du = kr(D1_u,I_v);
+            Dv = kr(I_u,D1_v);
+
+            e_w  = kr(e_l_u,I_v);
+            e_e  = kr(e_r_u,I_v);
+            e_s  = kr(I_u,e_l_v);
+            e_n  = kr(I_u,e_r_v);
+
+            % Metric coefficients
+            coords = g.points();
+            x = coords(:,1);
+            y = coords(:,2);
+
+            x_u = Du*x;
+            x_v = Dv*x;
+            y_u = Du*y;
+            y_v = Dv*y;
+
+            J = x_u.*y_v - x_v.*y_u;
+
+            K = cell(dim, dim);
+            K{1,1} = y_v./J;
+            K{1,2} = -y_u./J;
+            K{2,1} = -x_v./J;
+            K{2,2} = x_u./J;
+
+            % Physical derivatives
+            obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv;
+            obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv;
+
+            % Wrap around Aniosotropic Cartesian
+            rho_tilde = J.*rho;
+
+            PHI = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            PHI{i,j,k,l} = 0*C{i,j,k,l};
+                            for m = 1:dim
+                                for n = 1:dim
+                                    PHI{i,j,k,l} = PHI{i,j,k,l} + J.*K{m,i}.*C{m,j,n,l}.*K{n,k};
+                                end
+                            end
+                        end
+                    end
+                end
+            end
+
+            gRef = grid.equidistant([m_u, m_v], {0,1}, {0,1});
+            refObj = scheme.Elastic2dVariableAnisotropicUpwind(gRef, order, rho_tilde, PHI, opSet);
+
+            %---- Set object properties ------
+            obj.RHO = spdiag(rho);
+
+            % Volume quadrature
+            obj.J = spdiag(J);
+            obj.Ji = spdiag(1./J);
+            obj.H = obj.J*refObj.H;
+
+            % Boundary quadratures
+            s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2);
+            s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2);
+            s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2);
+            s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2);
+            obj.s_w = s_w;
+            obj.s_e = s_e;
+            obj.s_s = s_s;
+            obj.s_n = s_n;
+
+            obj.H_w = H_v*spdiag(s_w);
+            obj.H_e = H_v*spdiag(s_e);
+            obj.H_s = H_u*spdiag(s_s);
+            obj.H_n = H_u*spdiag(s_n);
+
+            % Restriction operators
+            obj.e_w = refObj.e_w;
+            obj.e_e = refObj.e_e;
+            obj.e_s = refObj.e_s;
+            obj.e_n = refObj.e_n;
+
+            % Adapt things from reference object
+            obj.D = refObj.D;
+            obj.E = refObj.E;
+
+            obj.e1_w = refObj.e1_w;
+            obj.e1_e = refObj.e1_e;
+            obj.e1_s = refObj.e1_s;
+            obj.e1_n = refObj.e1_n;
+
+            obj.e2_w = refObj.e2_w;
+            obj.e2_e = refObj.e2_e;
+            obj.e2_s = refObj.e2_s;
+            obj.e2_n = refObj.e2_n;
+
+            obj.e_scalar_w = refObj.e_scalar_w;
+            obj.e_scalar_e = refObj.e_scalar_e;
+            obj.e_scalar_s = refObj.e_scalar_s;
+            obj.e_scalar_n = refObj.e_scalar_n;
+
+            e1_w = obj.e1_w;
+            e1_e = obj.e1_e;
+            e1_s = obj.e1_s;
+            e1_n = obj.e1_n;
+
+            e2_w = obj.e2_w;
+            e2_e = obj.e2_e;
+            e2_s = obj.e2_s;
+            e2_n = obj.e2_n;
+
+            obj.tau1_w = (spdiag(1./s_w)*refObj.tau1_w')';
+            obj.tau1_e = (spdiag(1./s_e)*refObj.tau1_e')';
+            obj.tau1_s = (spdiag(1./s_s)*refObj.tau1_s')';
+            obj.tau1_n = (spdiag(1./s_n)*refObj.tau1_n')';
+
+            obj.tau2_w = (spdiag(1./s_w)*refObj.tau2_w')';
+            obj.tau2_e = (spdiag(1./s_e)*refObj.tau2_e')';
+            obj.tau2_s = (spdiag(1./s_s)*refObj.tau2_s')';
+            obj.tau2_n = (spdiag(1./s_n)*refObj.tau2_n')';
+
+            obj.tau_w = (refObj.e_w'*obj.e1_w*obj.tau1_w')' + (refObj.e_w'*obj.e2_w*obj.tau2_w')';
+            obj.tau_e = (refObj.e_e'*obj.e1_e*obj.tau1_e')' + (refObj.e_e'*obj.e2_e*obj.tau2_e')';
+            obj.tau_s = (refObj.e_s'*obj.e1_s*obj.tau1_s')' + (refObj.e_s'*obj.e2_s*obj.tau2_s')';
+            obj.tau_n = (refObj.e_n'*obj.e1_n*obj.tau1_n')' + (refObj.e_n'*obj.e2_n*obj.tau2_n')';
+
+            % Physical normals
+            e_w = obj.e_scalar_w;
+            e_e = obj.e_scalar_e;
+            e_s = obj.e_scalar_s;
+            e_n = obj.e_scalar_n;
+
+            e_w_vec = obj.e_w;
+            e_e_vec = obj.e_e;
+            e_s_vec = obj.e_s;
+            e_n_vec = obj.e_n;
+
+            nu_w = [-1,0];
+            nu_e = [1,0];
+            nu_s = [0,-1];
+            nu_n = [0,1];
+
+            obj.n_w = cell(2,1);
+            obj.n_e = cell(2,1);
+            obj.n_s = cell(2,1);
+            obj.n_n = cell(2,1);
+
+            n_w_1 = (1./s_w).*e_w'*(J.*(K{1,1}*nu_w(1) + K{1,2}*nu_w(2)));
+            n_w_2 = (1./s_w).*e_w'*(J.*(K{2,1}*nu_w(1) + K{2,2}*nu_w(2)));
+            obj.n_w{1} = spdiag(n_w_1);
+            obj.n_w{2} = spdiag(n_w_2);
+
+            n_e_1 = (1./s_e).*e_e'*(J.*(K{1,1}*nu_e(1) + K{1,2}*nu_e(2)));
+            n_e_2 = (1./s_e).*e_e'*(J.*(K{2,1}*nu_e(1) + K{2,2}*nu_e(2)));
+            obj.n_e{1} = spdiag(n_e_1);
+            obj.n_e{2} = spdiag(n_e_2);
+
+            n_s_1 = (1./s_s).*e_s'*(J.*(K{1,1}*nu_s(1) + K{1,2}*nu_s(2)));
+            n_s_2 = (1./s_s).*e_s'*(J.*(K{2,1}*nu_s(1) + K{2,2}*nu_s(2)));
+            obj.n_s{1} = spdiag(n_s_1);
+            obj.n_s{2} = spdiag(n_s_2);
+
+            n_n_1 = (1./s_n).*e_n'*(J.*(K{1,1}*nu_n(1) + K{1,2}*nu_n(2)));
+            n_n_2 = (1./s_n).*e_n'*(J.*(K{2,1}*nu_n(1) + K{2,2}*nu_n(2)));
+            obj.n_n{1} = spdiag(n_n_1);
+            obj.n_n{2} = spdiag(n_n_2);
+
+            % Operators that extract the normal component
+            obj.en_w = (obj.n_w{1}*obj.e1_w' + obj.n_w{2}*obj.e2_w')';
+            obj.en_e = (obj.n_e{1}*obj.e1_e' + obj.n_e{2}*obj.e2_e')';
+            obj.en_s = (obj.n_s{1}*obj.e1_s' + obj.n_s{2}*obj.e2_s')';
+            obj.en_n = (obj.n_n{1}*obj.e1_n' + obj.n_n{2}*obj.e2_n')';
+
+            % Stress operators
+            sigma = cell(dim, dim);
+            D1 = {obj.Dx, obj.Dy};
+            E = obj.E;
+            N = length(obj.RHO);
+            for i = 1:dim
+                for j = 1:dim
+                    sigma{i,j} = sparse(N,2*N);
+                    for k = 1:dim
+                        for l = 1:dim
+                            sigma{i,j} = sigma{i,j} + obj.C{i,j,k,l}*D1{k}*E{l}';
+                        end
+                    end
+                end
+            end
+            obj.sigma = sigma;
+
+            % Misc.
+            obj.refObj = refObj;
+            obj.m = refObj.m;
+            obj.h = refObj.h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+
+        % For displacement bc:
+        % bc = {comp, 'd', dComps},
+        % where
+        % dComps = vector of components with displacement BC. Default: 1:dim.
+        % In this way, we can specify one BC at a time even though the SATs depend on all BC.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.0);
+            assert( iscell(bc), 'The BC type must be a 2x1 or 3x1 cell array' );
+
+            [closure, penalty] = obj.refObj.boundary_condition(boundary, bc, tuning);
+
+            type = bc{2};
+
+            switch type
+            case {'F','f','Free','free','traction','Traction','t','T'}
+                s = obj.(['s_' boundary]);
+                s = spdiag(s);
+                penalty = penalty*s;
+            end
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.0
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            [closure, penalty] = obj.refObj.interface(boundary,neighbour_scheme.refObj,neighbour_boundary,type);
+        end
+
+        % Returns h11 for the boundary specified by the string boundary.
+        % op -- string
+        function h11 = getBorrowing(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case {'w','e'}
+                h11 = obj.refObj.h11{1};
+            case {'s', 'n'}
+                h11 = obj.refObj.h11{2};
+            end
+        end
+
+        % Returns the outward unit normal vector for the boundary specified by the string boundary.
+        % n is a cell of diagonal matrices for each normal component, n{1} = n_1, n{2} = n_2.
+        function n = getNormal(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            n = obj.(['n_' boundary]);
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2', 'en'})
+
+            o = obj.([op, '_', boundary]);
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e'})
+
+            switch op
+
+                case 'e'
+                    o = obj.(['e_scalar', '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary unknowns
+        %
+        % boundary -- string
+        function H = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
+            I_dim = speye(obj.dim, obj.dim);
+            H = kron(H, I_dim);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dStaggeredAnisotropic.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,904 @@
+classdef Elastic2dStaggeredAnisotropic < scheme.Scheme
+
+% Discretizes the elastic wave equation:
+% rho u_{i,tt} = dj C_{ijkl} dk u_j
+% Uses a staggered Lebedev grid
+% The solution (displacement) is stored on g_u
+% Stresses (and hance tractions) appear on g_s
+% Density is evaluated on g_u
+% The stiffness tensor is evaluated on g_s
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+        nGrids
+        N       % Total number of unknowns stored (2 displacement components on 2 grids)
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for variable coefficients
+        RHO  % Density
+        C    % Elastic stiffness tensor
+
+        D  % Total operator
+
+        % Boundary operators in cell format, used for BC
+        % T_w, T_e, T_s, T_n
+
+        % Traction operators
+        tau_w, tau_e, tau_s, tau_n      % Return scalar field
+        T_w, T_e, T_s, T_n              % Act on scalar, return scalar
+
+        % Inner products
+        H, H_u, H_s
+        % , Hi, Hi_kron, H_1D
+
+        % Boundary inner products (for scalar field)
+        H_w_u, H_e_u, H_s_u, H_n_u
+        H_w_s, H_e_s, H_s_s, H_n_s
+
+        % Boundary restriction operators
+        e_w_u, e_e_u, e_s_u, e_n_u      % Act on scalar field, return scalar field at boundary
+        e_w_s, e_e_s, e_s_s, e_n_s      % Act on scalar field, return scalar field at boundary
+
+        % U{i}^T picks out component i
+        U
+
+        % G{i}^T picks out displacement grid i
+        G
+
+        % Borrowing constants of the form gamma*h, where gamma is a dimensionless constant.
+        h11 % First entry in norm matrix
+
+    end
+
+    methods
+
+        % The coefficients can either be function handles or grid functions
+        function obj = Elastic2dStaggeredAnisotropic(g, order, rho, C)
+            default_arg('rho', @(x,y) 0*x+1);
+            dim = 2;
+            nGrids = 2;
+
+            C_default = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C_default{i,j,k,l} = @(x,y) 0*x + 1;
+                        end
+                    end
+                end
+            end
+            default_arg('C', C_default);
+            assert(isa(g, 'grid.Staggered'))
+
+            g_u = g.gridGroups{1};
+            g_s = g.gridGroups{2};
+
+            m_u = {g_u{1}.size(), g_u{2}.size()};
+            m_s = {g_s{1}.size(), g_s{2}.size()};
+
+            if isa(rho, 'function_handle')
+                rho_vec = cell(nGrids, 1);
+                for i = 1:nGrids
+                    rho_vec{i} = grid.evalOn(g_u{i}, rho);
+                end
+                rho = rho_vec;
+            end
+            for i = 1:nGrids
+                RHO{i} = spdiag(rho{i});
+            end
+            obj.RHO = RHO;
+
+            C_mat = cell(nGrids, 1);
+            for a = 1:nGrids
+                C_mat{a} = cell(dim,dim,dim,dim);
+            end
+            for a = 1:nGrids
+                for i = 1:dim
+                    for j = 1:dim
+                        for k = 1:dim
+                            for l = 1:dim
+                                if numel(C) == nGrids
+                                    C_mat{a}{i,j,k,l} = spdiag(C{a}{i,j,k,l});
+                                else
+                                    C_mat{a}{i,j,k,l} = spdiag(grid.evalOn(g_s{a}, C{i,j,k,l}));
+                                end
+                            end
+                        end
+                    end
+                end
+            end
+            C = C_mat;
+            obj.C = C;
+
+            % Reference m for primal grid
+            m = g_u{1}.size();
+            X = g_u{1}.points;
+            lim = cell(dim, 1);
+            for i = 1:dim
+                lim{i} = {min(X(:,i)), max(X(:,i))};
+            end
+
+            % 1D operators
+            ops = cell(dim,1);
+            D1p = cell(dim, 1);
+            D1d = cell(dim, 1);
+            mp = cell(dim, 1);
+            md = cell(dim, 1);
+            Ip = cell(dim, 1);
+            Id = cell(dim, 1);
+            Hp = cell(dim, 1);
+            Hd = cell(dim, 1);
+
+            opSet = @sbp.D1StaggeredUpwind;
+            for i = 1:dim
+                ops{i} = opSet(m(i), lim{i}, order);
+                D1p{i} = ops{i}.D1_dual;
+                D1d{i} = ops{i}.D1_primal;
+                mp{i} = length(ops{i}.x_primal);
+                md{i} = length(ops{i}.x_dual);
+                Ip{i} = speye(mp{i}, mp{i});
+                Id{i} = speye(md{i}, md{i});
+                Hp{i} = ops{i}.H_primal;
+                Hd{i} = ops{i}.H_dual;
+                ep_l{i} = ops{i}.e_primal_l;
+                ep_r{i} = ops{i}.e_primal_r;
+                ed_l{i} = ops{i}.e_dual_l;
+                ed_r{i} = ops{i}.e_dual_r;
+            end
+
+            % Borrowing constants
+            % for i = 1:dim
+            %     obj.h11{i} = ops{i}.H_dual(1,1);
+            % end
+            obj.h11{1}{1} = ops{1}.H_dual(1,1);
+            obj.h11{1}{2} = ops{2}.H_primal(1,1);
+            obj.h11{2}{1} = ops{1}.H_primal(1,1);
+            obj.h11{2}{2} = ops{2}.H_dual(1,1);
+
+            %---- Grid layout -------
+            % gu1 = xp o yp;
+            % gu2 = xd o yd;
+            % gs1 = xd o yp;
+            % gs2 = xp o yd;
+            %------------------------
+
+            % Quadratures
+            obj.H_u = cell(nGrids, 1);
+            obj.H_s = cell(nGrids, 1);
+            obj.H_u{1} = kron(Hp{1}, Hp{2});
+            obj.H_u{2} = kron(Hd{1}, Hd{2});
+            obj.H_s{1} = kron(Hd{1}, Hp{2});
+            obj.H_s{2} = kron(Hp{1}, Hd{2});
+
+            obj.H_w_s = cell(nGrids, 1);
+            obj.H_e_s = cell(nGrids, 1);
+            obj.H_s_s = cell(nGrids, 1);
+            obj.H_n_s = cell(nGrids, 1);
+
+            obj.H_w_s{1} = Hp{2};
+            obj.H_w_s{2} = Hd{2};
+            obj.H_e_s{1} = Hp{2};
+            obj.H_e_s{2} = Hd{2};
+
+            obj.H_s_s{1} = Hd{1};
+            obj.H_s_s{2} = Hp{1};
+            obj.H_n_s{1} = Hd{1};
+            obj.H_n_s{2} = Hp{1};
+
+            % Boundary restriction ops
+            e_w_u = cell(nGrids, 1);
+            e_s_u = cell(nGrids, 1);
+            e_e_u = cell(nGrids, 1);
+            e_n_u = cell(nGrids, 1);
+
+            e_w_s = cell(nGrids, 1);
+            e_s_s = cell(nGrids, 1);
+            e_e_s = cell(nGrids, 1);
+            e_n_s = cell(nGrids, 1);
+
+            e_w_u{1} = kron(ep_l{1}, Ip{2});
+            e_e_u{1} = kron(ep_r{1}, Ip{2});
+            e_s_u{1} = kron(Ip{1}, ep_l{2});
+            e_n_u{1} = kron(Ip{1}, ep_r{2});
+
+            e_w_u{2} = kron(ed_l{1}, Id{2});
+            e_e_u{2} = kron(ed_r{1}, Id{2});
+            e_s_u{2} = kron(Id{1}, ed_l{2});
+            e_n_u{2} = kron(Id{1}, ed_r{2});
+
+            e_w_s{1} = kron(ed_l{1}, Ip{2});
+            e_e_s{1} = kron(ed_r{1}, Ip{2});
+            e_s_s{1} = kron(Id{1}, ep_l{2});
+            e_n_s{1} = kron(Id{1}, ep_r{2});
+
+            e_w_s{2} = kron(ep_l{1}, Id{2});
+            e_e_s{2} = kron(ep_r{1}, Id{2});
+            e_s_s{2} = kron(Ip{1}, ed_l{2});
+            e_n_s{2} = kron(Ip{1}, ed_r{2});
+
+            obj.e_w_u = e_w_u;
+            obj.e_e_u = e_e_u;
+            obj.e_s_u = e_s_u;
+            obj.e_n_u = e_n_u;
+
+            obj.e_w_s = e_w_s;
+            obj.e_e_s = e_e_s;
+            obj.e_s_s = e_s_s;
+            obj.e_n_s = e_n_s;
+
+
+            % D1_u2s{a, b}{i} approximates ddi and
+            % takes from u grid number b to s grid number a
+            % Some of D1_x2y{a, b} are 0.
+            D1_u2s = cell(nGrids, nGrids);
+            D1_s2u = cell(nGrids, nGrids);
+
+            N_u = cell(nGrids, 1);
+            N_s = cell(nGrids, 1);
+            for a = 1:nGrids
+                N_u{a} = g_u{a}.N();
+                N_s{a} = g_s{a}.N();
+            end
+
+            %---- Grid layout -------
+            % gu1 = xp o yp;
+            % gu2 = xd o yd;
+            % gs1 = xd o yp;
+            % gs2 = xp o yd;
+            %------------------------
+
+            D1_u2s{1,1}{1} = kron(D1p{1}, Ip{2});
+            D1_s2u{1,1}{1} = kron(D1d{1}, Ip{2});
+
+            D1_u2s{1,2}{2} = kron(Id{1}, D1d{2});
+            D1_u2s{2,1}{2} = kron(Ip{1}, D1p{2});
+
+            D1_s2u{1,2}{2} = kron(Ip{1}, D1d{2});
+            D1_s2u{2,1}{2} = kron(Id{1}, D1p{2});
+
+            D1_u2s{2,2}{1} = kron(D1d{1}, Id{2});
+            D1_s2u{2,2}{1} = kron(D1p{1}, Id{2});
+
+            D1_u2s{1,1}{2} = sparse(N_s{1}, N_u{1});
+            D1_s2u{1,1}{2} = sparse(N_u{1}, N_s{1});
+
+            D1_u2s{2,2}{2} = sparse(N_s{2}, N_u{2});
+            D1_s2u{2,2}{2} = sparse(N_u{2}, N_s{2});
+
+            D1_u2s{1,2}{1} = sparse(N_s{1}, N_u{2});
+            D1_s2u{1,2}{1} = sparse(N_u{1}, N_s{2});
+
+            D1_u2s{2,1}{1} = sparse(N_s{2}, N_u{1});
+            D1_s2u{2,1}{1} = sparse(N_u{2}, N_s{1});
+
+
+            %---- Combine grids and components -----
+
+            % U{a}{i}^T picks out u component i on grid a
+            U = cell(nGrids, 1);
+            for a = 1:2
+                U{a} = cell(dim, 1);
+                I = speye(N_u{a}, N_u{a});
+                for i = 1:dim
+                    E = sparse(dim,1);
+                    E(i) = 1;
+                    U{a}{i} = kron(I, E);
+                end
+            end
+            obj.U = U;
+
+            % Order grids
+            % u1, u2
+            Iu1 = speye(dim*N_u{1}, dim*N_u{1});
+            Iu2 = speye(dim*N_u{2}, dim*N_u{2});
+
+            Gu1 = cell2mat( {Iu1; sparse(dim*N_u{2}, dim*N_u{1})} );
+            Gu2 = cell2mat( {sparse(dim*N_u{1}, dim*N_u{2}); Iu2} );
+
+            G = {Gu1; Gu2};
+            obj.G = G;
+
+            obj.H = G{1}*(U{1}{1}*obj.H_u{1}*U{1}{1}' + U{1}{2}*obj.H_u{1}*U{1}{2}')*G{1}'...
+                  + G{2}*(U{2}{1}*obj.H_u{2}*U{2}{1}' + U{2}{2}*obj.H_u{2}*U{2}{2}')*G{2}';
+
+            % e1_w = (e_scalar_w'*E{1}')';
+            % e1_e = (e_scalar_e'*E{1}')';
+            % e1_s = (e_scalar_s'*E{1}')';
+            % e1_n = (e_scalar_n'*E{1}')';
+
+            % e2_w = (e_scalar_w'*E{2}')';
+            % e2_e = (e_scalar_e'*E{2}')';
+            % e2_s = (e_scalar_s'*E{2}')';
+            % e2_n = (e_scalar_n'*E{2}')';
+
+            stencilWidth = order;
+            % Differentiation matrix D (without SAT)
+            N = dim*(N_u{1} + N_u{2});
+            D = spalloc(N, N, stencilWidth^2*N);
+            for a = 1:nGrids
+                for b = 1:nGrids
+                    for c = 1:nGrids
+                        for i = 1:dim
+                            for j = 1:dim
+                                for k = 1:dim
+                                    for l = 1:dim
+                                        D = D + (G{a}*U{a}{j})*(RHO{a}\(D1_s2u{a,b}{i}*C{b}{i,j,k,l}*D1_u2s{b,c}{k}*U{c}{l}'*G{c}'));
+                                    end
+                                end
+                            end
+                        end
+                    end
+                end
+            end
+            obj.D = D;
+            clear D;
+            obj.N = N;
+            %=========================================%'
+
+            % Numerical traction operators for BC.
+            %
+            % Formula at boundary j: % tau^{j}_i = sum_l T^{j}_{il} u_l
+            %
+
+            n_w = obj.getNormal('w');
+            n_e = obj.getNormal('e');
+            n_s = obj.getNormal('s');
+            n_n = obj.getNormal('n');
+
+            tau_w = cell(nGrids, 1);
+            tau_e = cell(nGrids, 1);
+            tau_s = cell(nGrids, 1);
+            tau_n = cell(nGrids, 1);
+
+            T_w = cell(nGrids, nGrids);
+            T_e = cell(nGrids, nGrids);
+            T_s = cell(nGrids, nGrids);
+            T_n = cell(nGrids, nGrids);
+            for b = 1:nGrids
+                [~, m_we] = size(e_w_s{b});
+                [~, m_sn] = size(e_s_s{b});
+                for c = 1:nGrids
+                    T_w{b,c} = cell(dim, dim);
+                    T_e{b,c} = cell(dim, dim);
+                    T_s{b,c} = cell(dim, dim);
+                    T_n{b,c} = cell(dim, dim);
+
+                    for i = 1:dim
+                        for j = 1:dim
+                            T_w{b,c}{i,j} = sparse(N_u{c}, m_we);
+                            T_e{b,c}{i,j} = sparse(N_u{c}, m_we);
+                            T_s{b,c}{i,j} = sparse(N_u{c}, m_sn);
+                            T_n{b,c}{i,j} = sparse(N_u{c}, m_sn);
+                        end
+                    end
+                end
+            end
+
+            for b = 1:nGrids
+                tau_w{b} = cell(dim, 1);
+                tau_e{b} = cell(dim, 1);
+                tau_s{b} = cell(dim, 1);
+                tau_n{b} = cell(dim, 1);
+
+                for j = 1:dim
+                    tau_w{b}{j} = sparse(N, m_s{b}(2));
+                    tau_e{b}{j} = sparse(N, m_s{b}(2));
+                    tau_s{b}{j} = sparse(N, m_s{b}(1));
+                    tau_n{b}{j} = sparse(N, m_s{b}(1));
+                end
+
+                for c = 1:nGrids
+                    for i = 1:dim
+                        for j = 1:dim
+                            for k = 1:dim
+                                for l = 1:dim
+                                    sigma_b_ij = C{b}{i,j,k,l}*D1_u2s{b,c}{k}*U{c}{l}'*G{c}';
+
+                                    tau_w{b}{j} = tau_w{b}{j} + (e_w_s{b}'*n_w(i)*sigma_b_ij)';
+                                    tau_e{b}{j} = tau_e{b}{j} + (e_e_s{b}'*n_e(i)*sigma_b_ij)';
+                                    tau_s{b}{j} = tau_s{b}{j} + (e_s_s{b}'*n_s(i)*sigma_b_ij)';
+                                    tau_n{b}{j} = tau_n{b}{j} + (e_n_s{b}'*n_n(i)*sigma_b_ij)';
+
+                                    S_bc_ijl = C{b}{i,j,k,l}*D1_u2s{b,c}{k};
+
+                                    T_w{b,c}{j,l} = T_w{b,c}{j,l} + (e_w_s{b}'*n_w(i)*S_bc_ijl)';
+                                    T_e{b,c}{j,l} = T_e{b,c}{j,l} + (e_e_s{b}'*n_e(i)*S_bc_ijl)';
+                                    T_s{b,c}{j,l} = T_s{b,c}{j,l} + (e_s_s{b}'*n_s(i)*S_bc_ijl)';
+                                    T_n{b,c}{j,l} = T_n{b,c}{j,l} + (e_n_s{b}'*n_n(i)*S_bc_ijl)';
+                                end
+                            end
+                        end
+                    end
+                end
+            end
+
+            obj.tau_w = tau_w;
+            obj.tau_e = tau_e;
+            obj.tau_s = tau_s;
+            obj.tau_n = tau_n;
+
+            obj.T_w = T_w;
+            obj.T_e = T_e;
+            obj.T_s = T_s;
+            obj.T_n = T_n;
+
+            % D1 = obj.D1;
+
+            % Traction tensors, T_ij
+            % obj.T_w = T_l{1};
+            % obj.T_e = T_r{1};
+            % obj.T_s = T_l{2};
+            % obj.T_n = T_r{2};
+
+            % Restriction operators
+            % obj.e_w = e_w;
+            % obj.e_e = e_e;
+            % obj.e_s = e_s;
+            % obj.e_n = e_n;
+
+            % obj.e1_w = e1_w;
+            % obj.e1_e = e1_e;
+            % obj.e1_s = e1_s;
+            % obj.e1_n = e1_n;
+
+            % obj.e2_w = e2_w;
+            % obj.e2_e = e2_e;
+            % obj.e2_s = e2_s;
+            % obj.e2_n = e2_n;
+
+            % obj.e_scalar_w = e_scalar_w;
+            % obj.e_scalar_e = e_scalar_e;
+            % obj.e_scalar_s = e_scalar_s;
+            % obj.e_scalar_n = e_scalar_n;
+
+            % % First component of traction
+            % obj.tau1_w = tau_l{1}{1};
+            % obj.tau1_e = tau_r{1}{1};
+            % obj.tau1_s = tau_l{2}{1};
+            % obj.tau1_n = tau_r{2}{1};
+
+            % % Second component of traction
+            % obj.tau2_w = tau_l{1}{2};
+            % obj.tau2_e = tau_r{1}{2};
+            % obj.tau2_s = tau_l{2}{2};
+            % obj.tau2_n = tau_r{2}{2};
+
+            % % Traction vectors
+            % obj.tau_w = (e_w'*e1_w*obj.tau1_w')' + (e_w'*e2_w*obj.tau2_w')';
+            % obj.tau_e = (e_e'*e1_e*obj.tau1_e')' + (e_e'*e2_e*obj.tau2_e')';
+            % obj.tau_s = (e_s'*e1_s*obj.tau1_s')' + (e_s'*e2_s*obj.tau2_s')';
+            % obj.tau_n = (e_n'*e1_n*obj.tau1_n')' + (e_n'*e2_n*obj.tau2_n')';
+
+            % Misc.
+            obj.m = m;
+            obj.h = [];
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+            obj.nGrids = nGrids;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+
+        % For displacement bc:
+        % bc = {comp, 'd', dComps},
+        % where
+        % dComps = vector of components with displacement BC. Default: 1:dim.
+        % In this way, we can specify one BC at a time even though the SATs depend on all BC.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.0);
+
+            assert( iscell(bc), 'The BC type must be a 2x1 or 3x1 cell array' );
+            comp = bc{1};
+            type = bc{2};
+            if ischar(comp)
+                comp = obj.getComponent(comp, boundary);
+            end
+
+            e_u       = obj.getBoundaryOperatorForScalarField('e_u', boundary);
+            e_s       = obj.getBoundaryOperatorForScalarField('e_s', boundary);
+            tau     = obj.getBoundaryOperator('tau', boundary);
+            T       = obj.getBoundaryTractionOperator(boundary);
+            H_gamma = obj.getBoundaryQuadratureForScalarField(boundary);
+            nu      = obj.getNormal(boundary);
+
+            U = obj.U;
+            G = obj.G;
+            H = obj.H_u;
+            RHO = obj.RHO;
+            C = obj.C;
+
+            %---- Grid layout -------
+            % gu1 = xp o yp;
+            % gu2 = xd o yd;
+            % gs1 = xd o yp;
+            % gs2 = xp o yd;
+            %------------------------
+
+            switch boundary
+                case {'w', 'e'}
+                    gridCombos = {{1,1}, {2,2}};
+                case {'s', 'n'}
+                    gridCombos = {{2,1}, {1,2}};
+            end
+
+            dim = obj.dim;
+            nGrids = obj.nGrids;
+
+            m_tot = obj.N;
+
+            % Preallocate
+            [~, col] = size(tau{1}{1});
+            closure = sparse(m_tot, m_tot);
+            penalty = cell(1, nGrids);
+            for a = 1:nGrids
+                [~, col] = size(e_u{a});
+                penalty{a} = sparse(m_tot, col);
+            end
+
+            j = comp;
+            switch type
+
+            % Dirichlet boundary condition
+            case {'D','d','dirichlet','Dirichlet','displacement','Displacement'}
+
+                if numel(bc) >= 3
+                    dComps = bc{3};
+                else
+                    dComps = 1:dim;
+                end
+
+                % Loops over components that Dirichlet penalties end up on
+                % Y: symmetrizing part of penalty
+                % Z: symmetric part of penalty
+                % X = Y + Z.
+
+                % Nonsymmetric part goes on all components to
+                % yield traction in discrete energy rate
+                for c = 1:nGrids
+                    for m = 1:numel(gridCombos)
+                        gc = gridCombos{m};
+                        a = gc{1};
+                        b = gc{2};
+
+                        for i = 1:dim
+                            Y = T{a,c}{j,i}';
+                            closure = closure + G{c}*U{c}{i}*((RHO{c}*H{c})\(Y'*H_gamma{a}*(e_u{b}'*U{b}{j}'*G{b}') ));
+                            penalty{b} = penalty{b} - G{c}*U{c}{i}*((RHO{c}*H{c})\(Y'*H_gamma{a}) );
+                        end
+                    end
+                end
+
+                % Symmetric part only required on components with displacement BC.
+                % (Otherwise it's not symmetric.)
+                for m = 1:numel(gridCombos)
+                    gc = gridCombos{m};
+                    a = gc{1};
+                    b = gc{2};
+
+                    h11 = obj.getBorrowing(b, boundary);
+
+                    for i = dComps
+                        Z = 0*C{b}{1,1,1,1};
+                        for l = 1:dim
+                            for k = 1:dim
+                                Z = Z + nu(l)*C{b}{l,i,k,j}*nu(k);
+                            end
+                        end
+                        Z = -tuning*dim/h11*Z;
+                        X = e_s{b}'*Z*e_s{b};
+                        closure = closure + G{a}*U{a}{i}*((RHO{a}*H{a})\(e_u{a}*X'*H_gamma{b}*(e_u{a}'*U{a}{j}'*G{a}' ) ));
+                        penalty{a} = penalty{a} - G{a}*U{a}{i}*((RHO{a}*H{a})\(e_u{a}*X'*H_gamma{b} ));
+                    end
+                end
+
+            % Free boundary condition
+            case {'F','f','Free','free','traction','Traction','t','T'}
+                for m = 1:numel(gridCombos)
+                    gc = gridCombos{m};
+                    a = gc{1};
+                    b = gc{2};
+                    closure = closure - G{a}*U{a}{j}*(RHO{a}\(H{a}\(e_u{a}*H_gamma{b}*tau{b}{j}')));
+                    penalty{b} = G{a}*U{a}{j}*(RHO{a}\(H{a}\(e_u{a}*H_gamma{b})));
+                end
+
+            % Unknown boundary condition
+            otherwise
+                error('No such boundary condition: type = %s',type);
+            end
+
+            penalty = cell2mat(penalty);
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.0
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            switch type.interpolation
+            case {'none', ''}
+                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            case {'op','OP'}
+                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            otherwise
+                error('Unknown type of interpolation: %s ', type.interpolation);
+            end
+        end
+
+        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+
+            u = obj;
+            v = neighbour_scheme;
+
+            % Operators, u side
+            eu_u       = u.getBoundaryOperatorForScalarField('e_u', boundary);
+            es_u       = u.getBoundaryOperatorForScalarField('e_s', boundary);
+            tau_u     = u.getBoundaryOperator('tau', boundary);
+            nu_u      = u.getNormal(boundary);
+
+            G_u = u.G;
+            U_u = u.U;
+            C_u = u.C;
+            m_tot_u = u.N;
+
+            % Operators, v side
+            eu_v       = v.getBoundaryOperatorForScalarField('e_u', neighbour_boundary);
+            es_v       = v.getBoundaryOperatorForScalarField('e_s', neighbour_boundary);
+            tau_v     = v.getBoundaryOperator('tau', neighbour_boundary);
+            nu_v      = v.getNormal(neighbour_boundary);
+
+            G_v = v.G;
+            U_v = v.U;
+            C_v = v.C;
+            m_tot_v = v.N;
+
+            % Operators that are only required for own domain
+            % Hi      = u.Hi_kron;
+            % RHOi    = u.RHOi_kron;
+            % e_kron  = u.getBoundaryOperator('e', boundary);
+            H       = u.H_u;
+            RHO     = u.RHO;
+            T_u     = u.getBoundaryTractionOperator(boundary);
+
+            % Shared operators
+            H_gamma         = u.getBoundaryQuadratureForScalarField(boundary);
+            % H_gamma_kron    = u.getBoundaryQuadrature(boundary);
+            dim             = u.dim;
+            nGrids          = obj.nGrids;
+
+            % Preallocate
+            % [~, m_int] = size(H_gamma);
+            closure = sparse(m_tot_u, m_tot_u);
+            penalty = sparse(m_tot_u, m_tot_v);
+
+            %---- Grid layout -------
+            % gu1 = xp o yp;
+            % gu2 = xd o yd;
+            % gs1 = xd o yp;
+            % gs2 = xp o yd;
+            %------------------------
+
+            switch boundary
+                case {'w', 'e'}
+                    switch neighbour_boundary
+                    case {'w', 'e'}
+                        gridCombos = {{1,1,1}, {2,2,2}};
+                    case {'s', 'n'}
+                        gridCombos = {{1,1,2}, {2,2,1}};
+                    end
+                case {'s', 'n'}
+                    switch neighbour_boundary
+                    case {'s', 'n'}
+                        gridCombos = {{2,1,1}, {1,2,2}};
+                    case {'w', 'e'}
+                        gridCombos = {{2,1,2}, {1,2,1}};
+                    end
+            end
+
+            % Symmetrizing part
+            for c = 1:nGrids
+                for m = 1:numel(gridCombos)
+                    gc = gridCombos{m};
+                    a = gc{1};
+                    b = gc{2};
+
+                    for i = 1:dim
+                        for j = 1:dim
+                            Y = 1/2*T_u{a,c}{j,i}';
+                            closure = closure + G_u{c}*U_u{c}{i}*((RHO{c}*H{c})\(Y'*H_gamma{a}*(eu_u{b}'*U_u{b}{j}'*G_u{b}') ));
+                            penalty = penalty - G_u{c}*U_u{c}{i}*((RHO{c}*H{c})\(Y'*H_gamma{a}*(eu_v{b}'*U_v{b}{j}'*G_v{b}') ));
+                        end
+                    end
+                end
+            end
+
+            % Symmetric part
+            for m = 1:numel(gridCombos)
+                gc = gridCombos{m};
+                a = gc{1};
+                b = gc{2};
+                bv = gc{3};
+
+                h11_u = u.getBorrowing(b, boundary);
+                h11_v = v.getBorrowing(bv, neighbour_boundary);
+
+                for i = 1:dim
+                    for j = 1:dim
+                        Z_u = 0*es_u{b}'*es_u{b};
+                        Z_v = 0*es_v{bv}'*es_v{bv};
+                        for l = 1:dim
+                            for k = 1:dim
+                                Z_u = Z_u + es_u{b}'*nu_u(l)*C_u{b}{l,i,k,j}*nu_u(k)*es_u{b};
+                                Z_v = Z_v + es_v{bv}'*nu_v(l)*C_v{bv}{l,i,k,j}*nu_v(k)*es_v{bv};
+                            end
+                        end
+                        Z = -tuning*dim*( 1/(4*h11_u)*Z_u + 1/(4*h11_v)*Z_v );
+                        % X = es_u{b}'*Z*es_u{b};
+                        % X = Z;
+                        closure = closure + G_u{a}*U_u{a}{i}*((RHO{a}*H{a})\(eu_u{a}*Z'*H_gamma{b}*(eu_u{a}'*U_u{a}{j}'*G_u{a}' ) ));
+                        penalty = penalty - G_u{a}*U_u{a}{i}*((RHO{a}*H{a})\(eu_u{a}*Z'*H_gamma{b}*(eu_v{a}'*U_v{a}{j}'*G_v{a}' ) ));
+                    end
+                end
+            end
+
+            % Continuity of traction
+            for j = 1:dim
+                for m = 1:numel(gridCombos)
+                    gc = gridCombos{m};
+                    a = gc{1};
+                    b = gc{2};
+                    bv = gc{3};
+                    closure = closure - 1/2*G_u{a}*U_u{a}{j}*(RHO{a}\(H{a}\(eu_u{a}*H_gamma{b}*tau_u{b}{j}')));
+                    penalty = penalty - 1/2*G_u{a}*U_u{a}{j}*(RHO{a}\(H{a}\(eu_u{a}*H_gamma{b}*tau_v{bv}{j}')));
+                end
+            end
+
+        end
+
+        function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            error('Non-conforming interfaces not implemented yet.');
+        end
+
+        % Returns the component number that is the tangential/normal component
+        % at the specified boundary
+        function comp = getComponent(obj, comp_str, boundary)
+            assertIsMember(comp_str, {'normal', 'tangential'});
+            assertIsMember(boundary, {'w', 'e', 's', 'n'});
+
+            switch boundary
+            case {'w', 'e'}
+                switch comp_str
+                case 'normal'
+                    comp = 1;
+                case 'tangential'
+                    comp = 2;
+                end
+            case {'s', 'n'}
+                switch comp_str
+                case 'normal'
+                    comp = 2;
+                case 'tangential'
+                    comp = 1;
+                end
+            end
+        end
+
+        % Returns h11 for the boundary specified by the string boundary.
+        % op -- string
+        function h11 = getBorrowing(obj, stressGrid, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case {'w','e'}
+                h11 = obj.h11{stressGrid}{1};
+            case {'s', 'n'}
+                h11 = obj.h11{stressGrid}{2};
+            end
+        end
+
+        % Returns the outward unit normal vector for the boundary specified by the string boundary.
+        function nu = getNormal(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case 'w'
+                nu = [-1,0];
+            case 'e'
+                nu = [1,0];
+            case 's'
+                nu = [0,-1];
+            case 'n'
+                nu = [0,1];
+            end
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'})
+
+            switch op
+                case {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'}
+                    o = obj.([op, '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e_u', 'e_s'})
+
+            switch op
+                case 'e_u'
+                    o = obj.(['e_', boundary, '_u']);
+                case 'e_s'
+                    o = obj.(['e_', boundary, '_s']);
+            end
+
+        end
+
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary unknowns
+        %
+        % boundary -- string
+        function H = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
+            I_dim = speye(obj.dim, obj.dim);
+            H = kron(H, I_dim);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary, '_s']);
+        end
+
+        function N = size(obj)
+            N = length(obj.D);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dStaggeredCurvilinearAnisotropic.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,694 @@
+classdef Elastic2dStaggeredCurvilinearAnisotropic < scheme.Scheme
+
+% Discretizes the elastic wave equation:
+% rho u_{i,tt} = dj C_{ijkl} dk u_j
+% in curvilinear coordinates, using Lebedev staggered grids
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+        nGrids
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for variable coefficients
+        J, Ji
+        RHO % Density
+        C   % Elastic stiffness tensor
+
+        D  % Total operator
+
+        % Dx, Dy % Physical derivatives
+        n_w, n_e, n_s, n_n % Physical normals
+
+        % Boundary operators in cell format, used for BC
+        T_w, T_e, T_s, T_n
+
+        % Traction operators
+        % tau_w, tau_e, tau_s, tau_n      % Return vector field
+        % tau1_w, tau1_e, tau1_s, tau1_n  % Return scalar field
+        % tau2_w, tau2_e, tau2_s, tau2_n  % Return scalar field
+
+        % Inner products
+        H
+
+        % Boundary inner products (for scalar field)
+        H_w, H_e, H_s, H_n
+
+        % Surface Jacobian vectors
+        s_w, s_e, s_s, s_n
+
+        % Boundary restriction operators
+        e_w_u, e_e_u, e_s_u, e_n_u      % Act on scalar field, return scalar field at boundary
+        e_w_s, e_e_s, e_s_s, e_n_s      % Act on scalar field, return scalar field at boundary
+        % e1_w, e1_e, e1_s, e1_n  % Act on vector field, return scalar field at boundary
+        % e2_w, e2_e, e2_s, e2_n  % Act on vector field, return scalar field at boundary
+        % e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field
+        % en_w, en_e, en_s, en_n  % Act on vector field, return normal component
+
+        % U{i}^T picks out component i
+        U
+
+        % G{i}^T picks out displacement grid i
+        G
+
+        % Elastic2dVariableAnisotropic object for reference domain
+        refObj
+    end
+
+    methods
+
+        % The coefficients can either be function handles or grid functions
+        % optFlag -- if true, extra computations are performed, which may be helpful for optimization.
+        function obj = Elastic2dStaggeredCurvilinearAnisotropic(g, order, rho, C)
+            default_arg('rho', @(x,y) 0*x+1);
+
+            opSet = @sbp.D1StaggeredUpwind;
+            dim = 2;
+            nGrids = 2;
+
+            C_default = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C_default{i,j,k,l} = @(x,y) 0*x;
+                        end
+                    end
+                end
+            end
+            default_arg('C', C_default);
+            assert(isa(g, 'grid.Staggered'));
+
+            g_u = g.gridGroups{1};
+            g_s = g.gridGroups{2};
+
+            m_u = {g_u{1}.size(), g_u{2}.size()};
+            m_s = {g_s{1}.size(), g_s{2}.size()};
+
+            if isa(rho, 'function_handle')
+                rho_vec = cell(nGrids, 1);
+                for a = 1:nGrids
+                    rho_vec{a} = grid.evalOn(g_u{a}, rho);
+                end
+                rho = rho_vec;
+            end
+            for a = 1:nGrids
+                RHO{a} = spdiag(rho{a});
+            end
+            obj.RHO = RHO;
+
+            C_mat = cell(nGrids, 1);
+            for a = 1:nGrids
+                C_mat{a} = cell(dim,dim,dim,dim);
+            end
+            for a = 1:nGrids
+                for i = 1:dim
+                    for j = 1:dim
+                        for k = 1:dim
+                            for l = 1:dim
+                                if numel(C) == dim
+                                    C_mat{a}{i,j,k,l} = spdiag(C{a}{i,j,k,l});
+                                else
+                                    C_mat{a}{i,j,k,l} = spdiag(grid.evalOn(g_s{a}, C{i,j,k,l}));
+                                end
+                            end
+                        end
+                    end
+                end
+            end
+            obj.C = C_mat;
+
+            C = cell(nGrids, 1);
+            for a = 1:nGrids
+                C{a} = cell(dim,dim,dim,dim);
+                for i = 1:dim
+                    for j = 1:dim
+                        for k = 1:dim
+                            for l = 1:dim
+                                C{a}{i,j,k,l} = diag(C_mat{a}{i,j,k,l});
+                            end
+                        end
+                    end
+                end
+            end
+
+            % Reference m for primal grid
+            m = g_u{1}.size();
+
+            % 1D operators
+            ops = cell(dim,1);
+            D1p = cell(dim, 1);
+            D1d = cell(dim, 1);
+            mp = cell(dim, 1);
+            md = cell(dim, 1);
+            Ip = cell(dim, 1);
+            Id = cell(dim, 1);
+            Hp = cell(dim, 1);
+            Hd = cell(dim, 1);
+
+            opSet = @sbp.D1StaggeredUpwind;
+            for i = 1:dim
+                ops{i} = opSet(m(i), {0,1}, order);
+                D1p{i} = ops{i}.D1_dual;
+                D1d{i} = ops{i}.D1_primal;
+                mp{i} = length(ops{i}.x_primal);
+                md{i} = length(ops{i}.x_dual);
+                Ip{i} = speye(mp{i}, mp{i});
+                Id{i} = speye(md{i}, md{i});
+                Hp{i} = ops{i}.H_primal;
+                Hd{i} = ops{i}.H_dual;
+                ep_l{i} = ops{i}.e_primal_l;
+                ep_r{i} = ops{i}.e_primal_r;
+                ed_l{i} = ops{i}.e_dual_l;
+                ed_r{i} = ops{i}.e_dual_r;
+            end
+
+            % D1_u2s{a, b}{i} approximates ddi and
+            % takes from u grid number b to s grid number a
+            % Some of D1_x2y{a, b} are 0.
+            D1_u2s = cell(nGrids, nGrids);
+            D1_s2u = cell(nGrids, nGrids);
+
+            N_u = cell(nGrids, 1);
+            N_s = cell(nGrids, 1);
+            for a = 1:nGrids
+                N_u{a} = g_u{a}.N();
+                N_s{a} = g_s{a}.N();
+            end
+
+            %---- Grid layout -------
+            % gu1 = xp o yp;
+            % gu2 = xd o yd;
+            % gs1 = xd o yp;
+            % gs2 = xp o yd;
+            %------------------------
+
+            % Logical operators
+            D1_u2s{1,1}{1} = kron(D1p{1}, Ip{2});
+            D1_s2u{1,1}{1} = kron(D1d{1}, Ip{2});
+
+            D1_u2s{1,2}{2} = kron(Id{1}, D1d{2});
+            D1_u2s{2,1}{2} = kron(Ip{1}, D1p{2});
+
+            D1_s2u{1,2}{2} = kron(Ip{1}, D1d{2});
+            D1_s2u{2,1}{2} = kron(Id{1}, D1p{2});
+
+            D1_u2s{2,2}{1} = kron(D1d{1}, Id{2});
+            D1_s2u{2,2}{1} = kron(D1p{1}, Id{2});
+
+            D1_u2s{1,1}{2} = sparse(N_s{1}, N_u{1});
+            D1_s2u{1,1}{2} = sparse(N_u{1}, N_s{1});
+
+            D1_u2s{2,2}{2} = sparse(N_s{2}, N_u{2});
+            D1_s2u{2,2}{2} = sparse(N_u{2}, N_s{2});
+
+            D1_u2s{1,2}{1} = sparse(N_s{1}, N_u{2});
+            D1_s2u{1,2}{1} = sparse(N_u{1}, N_s{2});
+
+            D1_u2s{2,1}{1} = sparse(N_s{2}, N_u{1});
+            D1_s2u{2,1}{1} = sparse(N_u{2}, N_s{1});
+
+
+            %---- Combine grids and components -----
+
+            % U{a}{i}^T picks out u component i on grid a
+            U = cell(nGrids, 1);
+            for a = 1:nGrids
+                U{a} = cell(dim, 1);
+                I = speye(N_u{a}, N_u{a});
+                for i = 1:dim
+                    E = sparse(dim,1);
+                    E(i) = 1;
+                    U{a}{i} = kron(I, E);
+                end
+            end
+            obj.U = U;
+
+            % Order grids
+            % u1, u2
+            Iu1 = speye(dim*N_u{1}, dim*N_u{1});
+            Iu2 = speye(dim*N_u{2}, dim*N_u{2});
+
+            Gu1 = cell2mat( {Iu1; sparse(dim*N_u{2}, dim*N_u{1})} );
+            Gu2 = cell2mat( {sparse(dim*N_u{1}, dim*N_u{2}); Iu2} );
+
+            G = {Gu1; Gu2};
+
+            %---- Grid layout -------
+            % gu1 = xp o yp;
+            % gu2 = xd o yd;
+            % gs1 = xd o yp;
+            % gs2 = xp o yd;
+            %------------------------
+
+            % Boundary restriction ops
+            e_w_u = cell(nGrids, 1);
+            e_s_u = cell(nGrids, 1);
+            e_e_u = cell(nGrids, 1);
+            e_n_u = cell(nGrids, 1);
+
+            e_w_s = cell(nGrids, 1);
+            e_s_s = cell(nGrids, 1);
+            e_e_s = cell(nGrids, 1);
+            e_n_s = cell(nGrids, 1);
+
+            e_w_u{1} = kron(ep_l{1}, Ip{2});
+            e_e_u{1} = kron(ep_r{1}, Ip{2});
+            e_s_u{1} = kron(Ip{1}, ep_l{2});
+            e_n_u{1} = kron(Ip{1}, ep_r{2});
+
+            e_w_u{2} = kron(ed_l{1}, Id{2});
+            e_e_u{2} = kron(ed_r{1}, Id{2});
+            e_s_u{2} = kron(Id{1}, ed_l{2});
+            e_n_u{2} = kron(Id{1}, ed_r{2});
+
+            e_w_s{1} = kron(ed_l{1}, Ip{2});
+            e_e_s{1} = kron(ed_r{1}, Ip{2});
+            e_s_s{1} = kron(Id{1}, ep_l{2});
+            e_n_s{1} = kron(Id{1}, ep_r{2});
+
+            e_w_s{2} = kron(ep_l{1}, Id{2});
+            e_e_s{2} = kron(ep_r{1}, Id{2});
+            e_s_s{2} = kron(Ip{1}, ed_l{2});
+            e_n_s{2} = kron(Ip{1}, ed_r{2});
+
+            %  --- Metric coefficients on stress grids -------
+            x = cell(nGrids, 1);
+            y = cell(nGrids, 1);
+            J = cell(nGrids, 1);
+            x_xi = cell(nGrids, 1);
+            x_eta = cell(nGrids, 1);
+            y_xi = cell(nGrids, 1);
+            y_eta = cell(nGrids, 1);
+
+            for a = 1:nGrids
+                coords = g_u{a}.points();
+                x{a} = coords(:,1);
+                y{a} = coords(:,2);
+            end
+
+            for a = 1:nGrids
+                x_xi{a} = zeros(N_s{a}, 1);
+                y_xi{a} = zeros(N_s{a}, 1);
+                x_eta{a} = zeros(N_s{a}, 1);
+                y_eta{a} = zeros(N_s{a}, 1);
+
+                for b = 1:nGrids
+                    x_xi{a} = x_xi{a} + D1_u2s{a,b}{1}*x{b};
+                    y_xi{a} = y_xi{a} + D1_u2s{a,b}{1}*y{b};
+                    x_eta{a} = x_eta{a} + D1_u2s{a,b}{2}*x{b};
+                    y_eta{a} = y_eta{a} + D1_u2s{a,b}{2}*y{b};
+                end
+            end
+
+            for a = 1:nGrids
+                J{a} = x_xi{a}.*y_eta{a} - x_eta{a}.*y_xi{a};
+            end
+
+            K = cell(nGrids, 1);
+            for a = 1:nGrids
+                K{a} = cell(dim, dim);
+                K{a}{1,1} = y_eta{a}./J{a};
+                K{a}{1,2} = -y_xi{a}./J{a};
+                K{a}{2,1} = -x_eta{a}./J{a};
+                K{a}{2,2} = x_xi{a}./J{a};
+            end
+            % ----------------------------------------------
+
+            %  --- Metric coefficients on displacement grids -------
+            x_s = cell(nGrids, 1);
+            y_s = cell(nGrids, 1);
+            J_u = cell(nGrids, 1);
+            x_xi_u = cell(nGrids, 1);
+            x_eta_u = cell(nGrids, 1);
+            y_xi_u = cell(nGrids, 1);
+            y_eta_u = cell(nGrids, 1);
+
+            for a = 1:nGrids
+                coords = g_s{a}.points();
+                x_s{a} = coords(:,1);
+                y_s{a} = coords(:,2);
+            end
+
+            for a = 1:nGrids
+                x_xi_u{a} = zeros(N_u{a}, 1);
+                y_xi_u{a} = zeros(N_u{a}, 1);
+                x_eta_u{a} = zeros(N_u{a}, 1);
+                y_eta_u{a} = zeros(N_u{a}, 1);
+
+                for b = 1:nGrids
+                    x_xi_u{a} = x_xi_u{a} + D1_s2u{a,b}{1}*x_s{b};
+                    y_xi_u{a} = y_xi_u{a} + D1_s2u{a,b}{1}*y_s{b};
+                    x_eta_u{a} = x_eta_u{a} + D1_s2u{a,b}{2}*x_s{b};
+                    y_eta_u{a} = y_eta_u{a} + D1_s2u{a,b}{2}*y_s{b};
+                end
+            end
+
+            for a = 1:nGrids
+                J_u{a} = x_xi_u{a}.*y_eta_u{a} - x_eta_u{a}.*y_xi_u{a};
+            end
+            % ----------------------------------------------
+
+            % x_u = Du*x;
+            % x_v = Dv*x;
+            % y_u = Du*y;
+            % y_v = Dv*y;
+
+            % J = x_u.*y_v - x_v.*y_u;
+
+            % K = cell(dim, dim);
+            % K{1,1} = y_v./J;
+            % K{1,2} = -y_u./J;
+            % K{2,1} = -x_v./J;
+            % K{2,2} = x_u./J;
+
+            % Physical derivatives
+            % obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv;
+            % obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv;
+
+            % Wrap around Aniosotropic Cartesian. Transformed density and stiffness
+            rho_tilde = cell(nGrids, 1);
+            PHI = cell(nGrids, 1);
+
+            for a = 1:nGrids
+                rho_tilde{a} = J_u{a}.*rho{a};
+            end
+
+            for a = 1:nGrids
+                PHI{a} = cell(dim,dim,dim,dim);
+                for i = 1:dim
+                    for j = 1:dim
+                        for k = 1:dim
+                            for l = 1:dim
+                                PHI{a}{i,j,k,l} = 0*C{a}{i,j,k,l};
+                                for m = 1:dim
+                                    for n = 1:dim
+                                        PHI{a}{i,j,k,l} = PHI{a}{i,j,k,l} + J{a}.*K{a}{m,i}.*C{a}{m,j,n,l}.*K{a}{n,k};
+                                    end
+                                end
+                            end
+                        end
+                    end
+                end
+            end
+
+            refObj = scheme.Elastic2dStaggeredAnisotropic(g.logic, order, rho_tilde, PHI);
+
+            G = refObj.G;
+            U = refObj.U;
+            H_u = refObj.H_u;
+
+            % Volume quadrature
+            [m, n] = size(refObj.H);
+            obj.H = sparse(m, n);
+            obj.J = sparse(m, n);
+            for a = 1:nGrids
+                for i = 1:dim
+                    obj.H = obj.H + G{a}*U{a}{i}*spdiag(J_u{a})*refObj.H_u{a}*U{a}{i}'*G{a}';
+                    obj.J = obj.J + G{a}*U{a}{i}*spdiag(J_u{a})*U{a}{i}'*G{a}';
+                end
+            end
+            obj.Ji = inv(obj.J);
+
+            % Boundary quadratures on stress grids
+            s_w = cell(nGrids, 1);
+            s_e = cell(nGrids, 1);
+            s_s = cell(nGrids, 1);
+            s_n = cell(nGrids, 1);
+
+            % e_w_u = refObj.e_w_u;
+            % e_e_u = refObj.e_e_u;
+            % e_s_u = refObj.e_s_u;
+            % e_n_u = refObj.e_n_u;
+
+            e_w_s = refObj.e_w_s;
+            e_e_s = refObj.e_e_s;
+            e_s_s = refObj.e_s_s;
+            e_n_s = refObj.e_n_s;
+
+            for a = 1:nGrids
+                s_w{a} = sqrt((e_w_s{a}'*x_eta{a}).^2 + (e_w_s{a}'*y_eta{a}).^2);
+                s_e{a} = sqrt((e_e_s{a}'*x_eta{a}).^2 + (e_e_s{a}'*y_eta{a}).^2);
+                s_s{a} = sqrt((e_s_s{a}'*x_xi{a}).^2 + (e_s_s{a}'*y_xi{a}).^2);
+                s_n{a} = sqrt((e_n_s{a}'*x_xi{a}).^2 + (e_n_s{a}'*y_xi{a}).^2);
+            end
+
+            obj.s_w = s_w;
+            obj.s_e = s_e;
+            obj.s_s = s_s;
+            obj.s_n = s_n;
+
+            % for a = 1:nGrids
+                % obj.H_w_s{a} = refObj.H_w_s{a}*spdiag(s_w{a});
+                % obj.H_e_s{a} = refObj.H_e_s{a}*spdiag(s_e{a});
+                % obj.H_s_s{a} = refObj.H_s_s{a}*spdiag(s_s{a});
+                % obj.H_n_s{a} = refObj.H_n_s{a}*spdiag(s_n{a});
+            % end
+
+            % Restriction operators
+            obj.e_w_u = refObj.e_w_u;
+            obj.e_e_u = refObj.e_e_u;
+            obj.e_s_u = refObj.e_s_u;
+            obj.e_n_u = refObj.e_n_u;
+
+            obj.e_w_s = refObj.e_w_s;
+            obj.e_e_s = refObj.e_e_s;
+            obj.e_s_s = refObj.e_s_s;
+            obj.e_n_s = refObj.e_n_s;
+
+            % Adapt things from reference object
+            obj.D = refObj.D;
+            obj.U = refObj.U;
+            obj.G = refObj.G;
+
+            % obj.e1_w = refObj.e1_w;
+            % obj.e1_e = refObj.e1_e;
+            % obj.e1_s = refObj.e1_s;
+            % obj.e1_n = refObj.e1_n;
+
+            % obj.e2_w = refObj.e2_w;
+            % obj.e2_e = refObj.e2_e;
+            % obj.e2_s = refObj.e2_s;
+            % obj.e2_n = refObj.e2_n;
+
+            % obj.e_scalar_w = refObj.e_scalar_w;
+            % obj.e_scalar_e = refObj.e_scalar_e;
+            % obj.e_scalar_s = refObj.e_scalar_s;
+            % obj.e_scalar_n = refObj.e_scalar_n;
+
+            % e1_w = obj.e1_w;
+            % e1_e = obj.e1_e;
+            % e1_s = obj.e1_s;
+            % e1_n = obj.e1_n;
+
+            % e2_w = obj.e2_w;
+            % e2_e = obj.e2_e;
+            % e2_s = obj.e2_s;
+            % e2_n = obj.e2_n;
+
+            % obj.tau1_w = (spdiag(1./s_w)*refObj.tau1_w')';
+            % obj.tau1_e = (spdiag(1./s_e)*refObj.tau1_e')';
+            % obj.tau1_s = (spdiag(1./s_s)*refObj.tau1_s')';
+            % obj.tau1_n = (spdiag(1./s_n)*refObj.tau1_n')';
+
+            % obj.tau2_w = (spdiag(1./s_w)*refObj.tau2_w')';
+            % obj.tau2_e = (spdiag(1./s_e)*refObj.tau2_e')';
+            % obj.tau2_s = (spdiag(1./s_s)*refObj.tau2_s')';
+            % obj.tau2_n = (spdiag(1./s_n)*refObj.tau2_n')';
+
+            % obj.tau_w = (refObj.e_w'*obj.e1_w*obj.tau1_w')' + (refObj.e_w'*obj.e2_w*obj.tau2_w')';
+            % obj.tau_e = (refObj.e_e'*obj.e1_e*obj.tau1_e')' + (refObj.e_e'*obj.e2_e*obj.tau2_e')';
+            % obj.tau_s = (refObj.e_s'*obj.e1_s*obj.tau1_s')' + (refObj.e_s'*obj.e2_s*obj.tau2_s')';
+            % obj.tau_n = (refObj.e_n'*obj.e1_n*obj.tau1_n')' + (refObj.e_n'*obj.e2_n*obj.tau2_n')';
+
+            % % Physical normals
+            % e_w = obj.e_scalar_w;
+            % e_e = obj.e_scalar_e;
+            % e_s = obj.e_scalar_s;
+            % e_n = obj.e_scalar_n;
+
+            % e_w_vec = obj.e_w;
+            % e_e_vec = obj.e_e;
+            % e_s_vec = obj.e_s;
+            % e_n_vec = obj.e_n;
+
+            % nu_w = [-1,0];
+            % nu_e = [1,0];
+            % nu_s = [0,-1];
+            % nu_n = [0,1];
+
+            % obj.n_w = cell(2,1);
+            % obj.n_e = cell(2,1);
+            % obj.n_s = cell(2,1);
+            % obj.n_n = cell(2,1);
+
+            % n_w_1 = (1./s_w).*e_w'*(J.*(K{1,1}*nu_w(1) + K{1,2}*nu_w(2)));
+            % n_w_2 = (1./s_w).*e_w'*(J.*(K{2,1}*nu_w(1) + K{2,2}*nu_w(2)));
+            % obj.n_w{1} = spdiag(n_w_1);
+            % obj.n_w{2} = spdiag(n_w_2);
+
+            % n_e_1 = (1./s_e).*e_e'*(J.*(K{1,1}*nu_e(1) + K{1,2}*nu_e(2)));
+            % n_e_2 = (1./s_e).*e_e'*(J.*(K{2,1}*nu_e(1) + K{2,2}*nu_e(2)));
+            % obj.n_e{1} = spdiag(n_e_1);
+            % obj.n_e{2} = spdiag(n_e_2);
+
+            % n_s_1 = (1./s_s).*e_s'*(J.*(K{1,1}*nu_s(1) + K{1,2}*nu_s(2)));
+            % n_s_2 = (1./s_s).*e_s'*(J.*(K{2,1}*nu_s(1) + K{2,2}*nu_s(2)));
+            % obj.n_s{1} = spdiag(n_s_1);
+            % obj.n_s{2} = spdiag(n_s_2);
+
+            % n_n_1 = (1./s_n).*e_n'*(J.*(K{1,1}*nu_n(1) + K{1,2}*nu_n(2)));
+            % n_n_2 = (1./s_n).*e_n'*(J.*(K{2,1}*nu_n(1) + K{2,2}*nu_n(2)));
+            % obj.n_n{1} = spdiag(n_n_1);
+            % obj.n_n{2} = spdiag(n_n_2);
+
+            % % Operators that extract the normal component
+            % obj.en_w = (obj.n_w{1}*obj.e1_w' + obj.n_w{2}*obj.e2_w')';
+            % obj.en_e = (obj.n_e{1}*obj.e1_e' + obj.n_e{2}*obj.e2_e')';
+            % obj.en_s = (obj.n_s{1}*obj.e1_s' + obj.n_s{2}*obj.e2_s')';
+            % obj.en_n = (obj.n_n{1}*obj.e1_n' + obj.n_n{2}*obj.e2_n')';
+
+            % Misc.
+            obj.refObj = refObj;
+            obj.m = refObj.m;
+            obj.h = refObj.h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+            obj.nGrids = nGrids;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+
+        % For displacement bc:
+        % bc = {comp, 'd', dComps},
+        % where
+        % dComps = vector of components with displacement BC. Default: 1:dim.
+        % In this way, we can specify one BC at a time even though the SATs depend on all BC.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.0);
+            assert( iscell(bc), 'The BC type must be a 2x1 or 3x1 cell array' );
+
+            [closure, penalty] = obj.refObj.boundary_condition(boundary, bc, tuning);
+
+            type = bc{2};
+
+            switch type
+            case {'F','f','Free','free','traction','Traction','t','T'}
+                s = obj.(['s_' boundary]);
+                s = spdiag(cell2mat(s));
+                penalty = penalty*s;
+            end
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.0
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            [closure, penalty] = obj.refObj.interface(boundary,neighbour_scheme.refObj,neighbour_boundary,type);
+        end
+
+        % Returns h11 for the boundary specified by the string boundary.
+        % op -- string
+        function h11 = getBorrowing(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case {'w','e'}
+                h11 = obj.refObj.h11{1};
+            case {'s', 'n'}
+                h11 = obj.refObj.h11{2};
+            end
+        end
+
+        % Returns the outward unit normal vector for the boundary specified by the string boundary.
+        % n is a cell of diagonal matrices for each normal component, n{1} = n_1, n{2} = n_2.
+        function n = getNormal(obj, boundary)
+            error('Not implemented');
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            n = obj.(['n_' boundary]);
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2', 'en'})
+
+            o = obj.([op, '_', boundary]);
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e_u', 'e_s'})
+
+            switch op
+                case 'e_u'
+                    o = obj.(['e_', boundary, '_u']);
+                case 'e_s'
+                    o = obj.(['e_', boundary, '_s']);
+            end
+
+        end
+
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary unknowns
+        %
+        % boundary -- string
+        function H = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
+            I_dim = speye(obj.dim, obj.dim);
+            H = kron(H, I_dim);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        function N = size(obj)
+            N = length(obj.D);
+        end
+    end
+end
--- a/+scheme/Elastic2dVariable.m	Thu Feb 17 18:55:11 2022 +0100
+++ b/+scheme/Elastic2dVariable.m	Thu Mar 10 16:54:26 2022 +0100
@@ -14,10 +14,10 @@
 
         order % Order of accuracy for the approximation
 
-        % Diagonal matrices for varible coefficients
-        LAMBDA % Variable coefficient, related to dilation
-        MU     % Shear modulus, variable coefficient
-        RHO, RHOi % Density, variable
+        % Diagonal matrices for variable coefficients
+        LAMBDA % Lame's first parameter, related to dilation
+        MU     % Shear modulus
+        RHO, RHOi, RHOi_kron % Density
 
         D % Total operator
         D1 % First derivatives
@@ -26,22 +26,28 @@
         D2_lambda
         D2_mu
 
-        % Traction operators used for BC
-        T_l, T_r
-        tau_l, tau_r
+        % Boundary operators in cell format, used for BC
+        T_w, T_e, T_s, T_n
 
-        H, Hi, H_1D % Inner products
-        e_l, e_r
+        % Traction operators
+        tau_w, tau_e, tau_s, tau_n      % Return vector field
+        tau1_w, tau1_e, tau1_s, tau1_n  % Return scalar field
+        tau2_w, tau2_e, tau2_s, tau2_n  % Return scalar field
 
+        % Inner products
+        H, Hi, Hi_kron, H_1D
 
-        d1_l, d1_r % Normal derivatives at the boundary
-        E % E{i}^T picks out component i
+        % Boundary inner products (for scalar field)
+        H_w, H_e, H_s, H_n
 
-        H_boundary % Boundary inner products
+        % Boundary restriction operators
+        e_w, e_e, e_s, e_n      % Act on vector field, return vector field at boundary
+        e1_w, e1_e, e1_s, e1_n  % Act on vector field, return scalar field at boundary
+        e2_w, e2_e, e2_s, e2_n  % Act on vector field, return scalar field at boundary
+        e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field
 
-        % Kroneckered norms and coefficients
-        RHOi_kron
-        Hi_kron
+        % E{i}^T picks out component i
+        E
 
         % Borrowing constants of the form gamma*h, where gamma is a dimensionless constant.
         theta_R % Borrowing (d1- D1)^2 from R
@@ -55,11 +61,13 @@
     methods
 
         % The coefficients can either be function handles or grid functions
-        function obj = Elastic2dVariable(g ,order, lambda, mu, rho, opSet)
+        % optFlag -- if true, extra computations are performed, which may be helpful for optimization.
+        function obj = Elastic2dVariable(g ,order, lambda, mu, rho, opSet, optFlag)
             default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
             default_arg('lambda', @(x,y) 0*x+1);
             default_arg('mu', @(x,y) 0*x+1);
             default_arg('rho', @(x,y) 0*x+1);
+            default_arg('optFlag', false);
             dim = 2;
 
             assert(isa(g, 'grid.Cartesian'))
@@ -105,10 +113,10 @@
             D2 = cell(dim,1);
             H = cell(dim,1);
             Hi = cell(dim,1);
-            e_l = cell(dim,1);
-            e_r = cell(dim,1);
-            d1_l = cell(dim,1);
-            d1_r = cell(dim,1);
+            e_0 = cell(dim,1);
+            e_m = cell(dim,1);
+            d1_0 = cell(dim,1);
+            d1_m = cell(dim,1);
 
             for i = 1:dim
                 I{i} = speye(m(i));
@@ -116,10 +124,10 @@
                 D2{i} = ops{i}.D2;
                 H{i} =  ops{i}.H;
                 Hi{i} = ops{i}.HI;
-                e_l{i} = ops{i}.e_l;
-                e_r{i} = ops{i}.e_r;
-                d1_l{i} = ops{i}.d1_l;
-                d1_r{i} = ops{i}.d1_r;
+                e_0{i} = ops{i}.e_l;
+                e_m{i} = ops{i}.e_r;
+                d1_0{i} = ops{i}.d1_l;
+                d1_m{i} = ops{i}.d1_r;
             end
 
             %====== Assemble full operators ========
@@ -134,30 +142,64 @@
             obj.D1 = cell(dim,1);
             obj.D2_lambda = cell(dim,1);
             obj.D2_mu = cell(dim,1);
-            obj.e_l = cell(dim,1);
-            obj.e_r = cell(dim,1);
-            obj.d1_l = cell(dim,1);
-            obj.d1_r = cell(dim,1);
 
             % D1
             obj.D1{1} = kron(D1{1},I{2});
             obj.D1{2} = kron(I{1},D1{2});
 
-            % Boundary operators
-            obj.e_l{1} = kron(e_l{1},I{2});
-            obj.e_l{2} = kron(I{1},e_l{2});
-            obj.e_r{1} = kron(e_r{1},I{2});
-            obj.e_r{2} = kron(I{1},e_r{2});
+            % Boundary restriction operators
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            e_l{1} = kron(e_0{1}, I{2});
+            e_l{2} = kron(I{1}, e_0{2});
+            e_r{1} = kron(e_m{1}, I{2});
+            e_r{2} = kron(I{1}, e_m{2});
+
+            e_scalar_w = e_l{1};
+            e_scalar_e = e_r{1};
+            e_scalar_s = e_l{2};
+            e_scalar_n = e_r{2};
+
+            I_dim = speye(dim, dim);
+            e_w = kron(e_scalar_w, I_dim);
+            e_e = kron(e_scalar_e, I_dim);
+            e_s = kron(e_scalar_s, I_dim);
+            e_n = kron(e_scalar_n, I_dim);
 
-            obj.d1_l{1} = kron(d1_l{1},I{2});
-            obj.d1_l{2} = kron(I{1},d1_l{2});
-            obj.d1_r{1} = kron(d1_r{1},I{2});
-            obj.d1_r{2} = kron(I{1},d1_r{2});
+            % Boundary derivatives
+            d1_l = cell(dim,1);
+            d1_r = cell(dim,1);
+            d1_l{1} = kron(d1_0{1}, I{2});
+            d1_l{2} = kron(I{1}, d1_0{2});
+            d1_r{1} = kron(d1_m{1}, I{2});
+            d1_r{2} = kron(I{1}, d1_m{2});
+
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye(m_tot,m_tot);
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(I,e);
+            end
+            obj.E = E;
+
+            e1_w = (e_scalar_w'*E{1}')';
+            e1_e = (e_scalar_e'*E{1}')';
+            e1_s = (e_scalar_s'*E{1}')';
+            e1_n = (e_scalar_n'*E{1}')';
+
+            e2_w = (e_scalar_w'*E{2}')';
+            e2_e = (e_scalar_e'*E{2}')';
+            e2_s = (e_scalar_s'*E{2}')';
+            e2_n = (e_scalar_n'*E{2}')';
+
 
             % D2
             for i = 1:dim
-                obj.D2_lambda{i} = sparse(m_tot);
-                obj.D2_mu{i} = sparse(m_tot);
+                obj.D2_lambda{i} = sparse(m_tot, m_tot);
+                obj.D2_mu{i} = sparse(m_tot, m_tot);
             end
             ind = grid.funcToMatrix(g, 1:m_tot);
 
@@ -182,21 +224,12 @@
             % Quadratures
             obj.H = kron(H{1},H{2});
             obj.Hi = inv(obj.H);
-            obj.H_boundary = cell(dim,1);
-            obj.H_boundary{1} = H{2};
-            obj.H_boundary{2} = H{1};
+            obj.H_w = H{2};
+            obj.H_e = H{2};
+            obj.H_s = H{1};
+            obj.H_n = H{1};
             obj.H_1D = {H{1}, H{2}};
 
-            % E{i}^T picks out component i.
-            E = cell(dim,1);
-            I = speye(m_tot,m_tot);
-            for i = 1:dim
-                e = sparse(dim,1);
-                e(i) = 1;
-                E{i} = kron(I,e);
-            end
-            obj.E = E;
-
             % Differentiation matrix D (without SAT)
             D2_lambda = obj.D2_lambda;
             D2_mu = obj.D2_mu;
@@ -221,16 +254,14 @@
             % Numerical traction operators for BC.
             % Because d1 =/= e0^T*D1, the numerical tractions are different
             % at every boundary.
+            %
+            % Formula at boundary j: % tau^{j}_i = sum_k T^{j}_{ik} u_k
+            %
             T_l = cell(dim,1);
             T_r = cell(dim,1);
             tau_l = cell(dim,1);
             tau_r = cell(dim,1);
-            % tau^{j}_i = sum_k T^{j}_{ik} u_k
 
-            d1_l = obj.d1_l;
-            d1_r = obj.d1_r;
-            e_l = obj.e_l;
-            e_r = obj.e_r;
             D1 = obj.D1;
 
             % Loop over boundaries
@@ -250,45 +281,72 @@
 
                 % Loop over components
                 for i = 1:dim
-                    tau_l{j}{i} = sparse(n_l, dim*m_tot);
-                    tau_r{j}{i} = sparse(n_r, dim*m_tot);
+                    tau_l{j}{i} = sparse(dim*m_tot, n_l);
+                    tau_r{j}{i} = sparse(dim*m_tot, n_r);
                     for k = 1:dim
                         T_l{j}{i,k} = ...
-                        -d(i,j)*LAMBDA_l*(d(i,k)*d1_l{j}' + db(i,k)*e_l{j}'*D1{k})...
-                        -d(j,k)*MU_l*(d(i,j)*d1_l{j}' + db(i,j)*e_l{j}'*D1{i})...
-                        -d(i,k)*MU_l*d1_l{j}';
+                        (-d(i,j)*LAMBDA_l*(d(i,k)*d1_l{j}' + db(i,k)*e_l{j}'*D1{k})...
+                         -d(j,k)*MU_l*(d(i,j)*d1_l{j}' + db(i,j)*e_l{j}'*D1{i})...
+                         -d(i,k)*MU_l*d1_l{j}')';
 
                         T_r{j}{i,k} = ...
-                        d(i,j)*LAMBDA_r*(d(i,k)*d1_r{j}' + db(i,k)*e_r{j}'*D1{k})...
+                        (d(i,j)*LAMBDA_r*(d(i,k)*d1_r{j}' + db(i,k)*e_r{j}'*D1{k})...
                         +d(j,k)*MU_r*(d(i,j)*d1_r{j}' + db(i,j)*e_r{j}'*D1{i})...
-                        +d(i,k)*MU_r*d1_r{j}';
+                        +d(i,k)*MU_r*d1_r{j}')';
 
-                        tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}';
-                        tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}';
+                        tau_l{j}{i} = tau_l{j}{i} + (T_l{j}{i,k}'*E{k}')';
+                        tau_r{j}{i} = tau_r{j}{i} + (T_r{j}{i,k}'*E{k}')';
                     end
 
                 end
             end
 
-            % Transpose T and tau to match boundary operator convention
-            for i = 1:dim
-                for j = 1:dim
-                    tau_l{i}{j} = transpose(tau_l{i}{j});
-                    tau_r{i}{j} = transpose(tau_r{i}{j});
-                    for k = 1:dim
-                        T_l{i}{j,k} = transpose(T_l{i}{j,k});
-                        T_r{i}{j,k} = transpose(T_r{i}{j,k});
-                    end
-                end
-            end
+            % Traction tensors, T_ij
+            obj.T_w = T_l{1};
+            obj.T_e = T_r{1};
+            obj.T_s = T_l{2};
+            obj.T_n = T_r{2};
+
+            % Restriction operators
+            obj.e_w = e_w;
+            obj.e_e = e_e;
+            obj.e_s = e_s;
+            obj.e_n = e_n;
+
+            obj.e1_w = e1_w;
+            obj.e1_e = e1_e;
+            obj.e1_s = e1_s;
+            obj.e1_n = e1_n;
+
+            obj.e2_w = e2_w;
+            obj.e2_e = e2_e;
+            obj.e2_s = e2_s;
+            obj.e2_n = e2_n;
 
-            obj.T_l = T_l;
-            obj.T_r = T_r;
-            obj.tau_l = tau_l;
-            obj.tau_r = tau_r;
+            obj.e_scalar_w = e_scalar_w;
+            obj.e_scalar_e = e_scalar_e;
+            obj.e_scalar_s = e_scalar_s;
+            obj.e_scalar_n = e_scalar_n;
+
+            % First component of traction
+            obj.tau1_w = tau_l{1}{1};
+            obj.tau1_e = tau_r{1}{1};
+            obj.tau1_s = tau_l{2}{1};
+            obj.tau1_n = tau_r{2}{1};
+
+            % Second component of traction
+            obj.tau2_w = tau_l{1}{2};
+            obj.tau2_e = tau_r{1}{2};
+            obj.tau2_s = tau_l{2}{2};
+            obj.tau2_n = tau_r{2}{2};
+
+            % Traction vectors
+            obj.tau_w = (e_w'*e1_w*obj.tau1_w')' + (e_w'*e2_w*obj.tau2_w')';
+            obj.tau_e = (e_e'*e1_e*obj.tau1_e')' + (e_e'*e2_e*obj.tau2_e')';
+            obj.tau_s = (e_s'*e1_s*obj.tau1_s')' + (e_s'*e2_s*obj.tau2_s')';
+            obj.tau_n = (e_n'*e1_n*obj.tau1_n')' + (e_n'*e2_n*obj.tau2_n')';
 
             % Kroneckered norms and coefficients
-            I_dim = speye(dim);
             obj.RHOi_kron = kron(obj.RHOi, I_dim);
             obj.Hi_kron = kron(obj.Hi, I_dim);
 
@@ -300,42 +358,46 @@
             obj.dim = dim;
 
             % B, used for adjoint optimization
-            B = cell(dim, 1);
-            for i = 1:dim
-                B{i} = cell(m_tot, 1);
-            end
+            B = [];
+            if optFlag
+                B = cell(dim, 1);
+                for i = 1:dim
+                    B{i} = cell(m_tot, 1);
+                end
+
+                B0 = sparse(m_tot, m_tot);
+                for i = 1:dim
+                    for j = 1:m_tot
+                        B{i}{j} = B0;
+                    end
+                end
+
+                ind = grid.funcToMatrix(g, 1:m_tot);
 
-            for i = 1:dim
-                for j = 1:m_tot
-                    B{i}{j} = sparse(m_tot, m_tot);
+                % Direction 1
+                for k = 1:m(1)
+                    c = sparse(m(1),1);
+                    c(k) = 1;
+                    [~, B_1D] = ops{1}.D2(c);
+                    for l = 1:m(2)
+                        p = ind(:,l);
+                        B{1}{(k-1)*m(2) + l}(p, p) = B_1D;
+                    end
+                end
+
+                % Direction 2
+                for k = 1:m(2)
+                    c = sparse(m(2),1);
+                    c(k) = 1;
+                    [~, B_1D] = ops{2}.D2(c);
+                    for l = 1:m(1)
+                        p = ind(l,:);
+                        B{2}{(l-1)*m(2) + k}(p, p) = B_1D;
+                    end
                 end
             end
-
-            ind = grid.funcToMatrix(g, 1:m_tot);
+            obj.B = B;
 
-            % Direction 1
-            for k = 1:m(1)
-                c = sparse(m(1),1);
-                c(k) = 1;
-                [~, B_1D] = ops{1}.D2(c);
-                for l = 1:m(2)
-                    p = ind(:,l);
-                    B{1}{(k-1)*m(2) + l}(p, p) = B_1D;
-                end
-            end
-
-            % Direction 2
-            for k = 1:m(2)
-                c = sparse(m(2),1);
-                c(k) = 1;
-                [~, B_1D] = ops{2}.D2(c);
-                for l = 1:m(1)
-                    p = ind(l,:);
-                    B{2}{(l-1)*m(2) + k}(p, p) = B_1D;
-                end
-            end
-
-            obj.B = B;
 
         end
 
@@ -344,7 +406,9 @@
         % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
         %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
         %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
-        %                           on the first component.
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
         %       data                is a function returning the data that should be applied at the boundary.
         %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
         %       neighbour_boundary  is a string specifying which boundary to interface to.
@@ -354,11 +418,15 @@
             assert( iscell(bc), 'The BC type must be a 2x1 cell array' );
             comp = bc{1};
             type = bc{2};
+            if ischar(comp)
+                comp = obj.getComponent(comp, boundary);
+            end
 
-            % j is the coordinate direction of the boundary
-            j = obj.get_boundary_number(boundary);
-            [e, T, tau, H_gamma] = obj.getBoundaryOperator({'e','T','tau','H'}, boundary);
-
+            e       = obj.getBoundaryOperatorForScalarField('e', boundary);
+            tau     = obj.getBoundaryOperator(['tau' num2str(comp)], boundary);
+            T       = obj.getBoundaryTractionOperator(boundary);
+            alpha   = obj.getBoundaryOperatorForScalarField('alpha', boundary);
+            H_gamma = obj.getBoundaryQuadratureForScalarField(boundary);
 
             E = obj.E;
             Hi = obj.Hi;
@@ -370,8 +438,9 @@
             m_tot = obj.grid.N();
 
             % Preallocate
+            [~, col] = size(tau);
             closure = sparse(dim*m_tot, dim*m_tot);
-            penalty = sparse(dim*m_tot, m_tot/obj.m(j));
+            penalty = sparse(dim*m_tot, col);
 
             k = comp;
             switch type
@@ -379,8 +448,6 @@
             % Dirichlet boundary condition
             case {'D','d','dirichlet','Dirichlet'}
 
-                alpha = obj.getBoundaryOperator('alpha', boundary);
-
                 % Loop over components that Dirichlet penalties end up on
                 for i = 1:dim
                     C = transpose(T{k,i});
@@ -392,7 +459,7 @@
 
             % Free boundary condition
             case {'F','f','Free','free','traction','Traction','t','T'}
-                    closure = closure - E{k}*RHOi*Hi*e*H_gamma*tau{k}';
+                    closure = closure - E{k}*RHOi*Hi*e*H_gamma*tau';
                     penalty = penalty + E{k}*RHOi*Hi*e*H_gamma;
 
             % Unknown boundary condition
@@ -429,11 +496,11 @@
             % Operators without subscripts are from the own domain.
 
             % Get boundary operators
-            e = obj.getBoundaryOperator('e_tot', boundary);
-            tau = obj.getBoundaryOperator('tau_tot', boundary);
+            e   = obj.getBoundaryOperator('e', boundary);
+            tau = obj.getBoundaryOperator('tau', boundary);
 
-            e_v = neighbour_scheme.getBoundaryOperator('e_tot', neighbour_boundary);
-            tau_v = neighbour_scheme.getBoundaryOperator('tau_tot', neighbour_boundary);
+            e_v   = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary);
+            tau_v = neighbour_scheme.getBoundaryOperator('tau', neighbour_boundary);
 
             H_gamma = obj.getBoundaryQuadrature(boundary);
 
@@ -442,8 +509,8 @@
             RHOi = obj.RHOi_kron;
 
             % Penalty strength operators
-            alpha_u = 1/4*tuning*obj.getBoundaryOperator('alpha_tot', boundary);
-            alpha_v = 1/4*tuning*neighbour_scheme.getBoundaryOperator('alpha_tot', neighbour_boundary);
+            alpha_u = 1/4*tuning*obj.getBoundaryOperator('alpha', boundary);
+            alpha_v = 1/4*tuning*neighbour_scheme.getBoundaryOperator('alpha', neighbour_boundary);
 
             closure = -RHOi*Hi*e*H_gamma*(alpha_u' + alpha_v'*e_v*e');
             penalty = RHOi*Hi*e*H_gamma*(alpha_u'*e*e_v' + alpha_v');
@@ -460,103 +527,108 @@
             error('Non-conforming interfaces not implemented yet.');
         end
 
-        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
-        function [j, nj] = get_boundary_number(obj, boundary)
-            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+        % Returns the component number that is the tangential/normal component
+        % at the specified boundary
+        function comp = getComponent(obj, comp_str, boundary)
+            assertIsMember(comp_str, {'normal', 'tangential'});
+            assertIsMember(boundary, {'w', 'e', 's', 'n'});
 
             switch boundary
-                case {'w', 'e'}
-                    j = 1;
-                case {'s', 'n'}
-                    j = 2;
-            end
-
-            switch boundary
-                case {'w', 's'}
-                    nj = -1;
-                case {'e', 'n'}
-                    nj = 1;
+            case {'w', 'e'}
+                switch comp_str
+                case 'normal'
+                    comp = 1;
+                case 'tangential'
+                    comp = 2;
+                end
+            case {'s', 'n'}
+                switch comp_str
+                case 'normal'
+                    comp = 2;
+                case 'tangential'
+                    comp = 1;
+                end
             end
         end
 
         % Returns the boundary operator op for the boundary specified by the string boundary.
         % op -- string
-        % Only operators with name *_tot can be used with multiblock.DiffOp.getBoundaryOperator()
-        function [varargout] = getBoundaryOperator(obj, op, boundary)
+        function o = getBoundaryOperator(obj, op, boundary)
             assertIsMember(boundary, {'w', 'e', 's', 'n'})
-            assertIsMember(op, {'e', 'e_tot', 'd', 'T', 'tau', 'tau_tot', 'H', 'alpha', 'alpha_tot'})
-
-            switch boundary
-                case {'w', 'e'}
-                    j = 1;
-                case {'s', 'n'}
-                    j = 2;
-            end
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2', 'alpha', 'alpha1', 'alpha2'})
 
             switch op
-                case 'e'
-                    switch boundary
-                        case {'w', 's'}
-                            o = obj.e_l{j};
-                        case {'e', 'n'}
-                            o = obj.e_r{j};
-                    end
+
+                case {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'}
+                    o = obj.([op, '_', boundary]);
 
-                case 'e_tot'
-                    e = obj.getBoundaryOperator('e', boundary);
-                    I_dim = speye(obj.dim, obj.dim);
-                    o = kron(e, I_dim);
+                % Yields vector-valued penalty strength given displacement BC on all components
+                case 'alpha'
+                    e               = obj.getBoundaryOperator('e', boundary);
+                    e_scalar        = obj.getBoundaryOperatorForScalarField('e', boundary);
+                    alpha_scalar    = obj.getBoundaryOperatorForScalarField('alpha', boundary);
+                    E = obj.E;
+                    [m, n] = size(alpha_scalar{1,1});
+                    alpha = sparse(m*obj.dim, n*obj.dim);
+                    for i = 1:obj.dim
+                        for l = 1:obj.dim
+                            alpha = alpha + (e'*E{i}*e_scalar*alpha_scalar{i,l}'*E{l}')';
+                        end
+                    end
+                    o = alpha;
 
-                case 'd'
-                    switch boundary
-                        case {'w', 's'}
-                            o = obj.d1_l{j};
-                        case {'e', 'n'}
-                            o = obj.d1_r{j};
-                    end
+                % Yields penalty strength for component 1 given displacement BC on all components
+                case 'alpha1'
+                    alpha   = obj.getBoundaryOperator('alpha', boundary);
+                    e       = obj.getBoundaryOperator('e', boundary);
+                    e1      = obj.getBoundaryOperator('e1', boundary);
 
-                case 'T'
-                    switch boundary
-                        case {'w', 's'}
-                            o = obj.T_l{j};
-                        case {'e', 'n'}
-                            o = obj.T_r{j};
-                    end
+                    alpha1 = (e1'*e*alpha')';
+                    o = alpha1;
+
+                % Yields penalty strength for component 2 given displacement BC on all components
+                case 'alpha2'
+                    alpha   = obj.getBoundaryOperator('alpha', boundary);
+                    e       = obj.getBoundaryOperator('e', boundary);
+                    e2      = obj.getBoundaryOperator('e2', boundary);
+
+                    alpha2 = (e2'*e*alpha')';
+                    o = alpha2;
+            end
 
-                case 'tau'
-                    switch boundary
-                        case {'w', 's'}
-                            o = obj.tau_l{j};
-                        case {'e', 'n'}
-                            o = obj.tau_r{j};
-                    end
-
-                case 'tau_tot'
-                    [e, tau] = obj.getBoundaryOperator({'e', 'tau'}, boundary);
+        end
 
-                    I_dim = speye(obj.dim, obj.dim);
-                    e_tot = kron(e, I_dim);
-                    E = obj.E;
-                    tau_tot = (e_tot'*E{1}*e*tau{1}')';
-                    for i = 2:obj.dim
-                        tau_tot = tau_tot + (e_tot'*E{i}*e*tau{i}')';
-                    end
-                    o = tau_tot;
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'alpha'})
 
-                case 'H'
-                    o = obj.H_boundary{j};
+            switch op
+
+                case 'e'
+                    o = obj.(['e_scalar', '_', boundary]);
 
                 case 'alpha'
-                    % alpha = alpha(i,j) is the penalty strength for displacement BC.
-                    e = obj.getBoundaryOperator('e', boundary);
+
+                    % alpha{i,j} is the penalty strength on component i due to
+                    % displacement BC for component j.
+                    e = obj.getBoundaryOperatorForScalarField('e', boundary);
 
                     LAMBDA = obj.LAMBDA;
                     MU = obj.MU;
+                    dim = obj.dim;
 
-                    dim = obj.dim;
-                    theta_R = obj.theta_R{j};
-                    theta_H = obj.theta_H{j};
-                    theta_M = obj.theta_M{j};
+                    switch boundary
+                        case {'w', 'e'}
+                            k = 1;
+                        case {'s', 'n'}
+                            k = 2;
+                    end
+
+                    theta_R = obj.theta_R{k};
+                    theta_H = obj.theta_H{k};
+                    theta_M = obj.theta_M{k};
 
                     a_lambda = dim/theta_H + 1/theta_R;
                     a_mu_i = 2/theta_M;
@@ -564,53 +636,53 @@
 
                     d = @kroneckerDelta;  % Kronecker delta
                     db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
-                    alpha = cell(obj.dim, obj.dim);
 
                     alpha_func = @(i,j) d(i,j)* a_lambda*LAMBDA ...
                                         + d(i,j)* a_mu_i*MU ...
                                         + db(i,j)*a_mu_ij*MU;
+
+                    alpha = cell(obj.dim, obj.dim);
                     for i = 1:obj.dim
-                        for l = 1:obj.dim
-                            alpha{i,l} = d(i,l)*alpha_func(i,j)*e;
+                        for j = 1:obj.dim
+                            alpha{i,j} = d(i,j)*alpha_func(i,k)*e;
                         end
                     end
-
                     o = alpha;
-
-                case 'alpha_tot'
-                    % alpha = alpha(i,j) is the penalty strength for displacement BC.
-                    [e, e_tot, alpha] = obj.getBoundaryOperator({'e', 'e_tot', 'alpha'}, boundary);
-                    E = obj.E;
-                    [m, n] = size(alpha{1,1});
-                    alpha_tot = sparse(m*obj.dim, n*obj.dim);
-                    for i = 1:obj.dim
-                        for l = 1:obj.dim
-                            alpha_tot = alpha_tot + (e_tot'*E{i}*e*alpha{i,l}'*E{l}')';
-                        end
-                    end
-                    o = alpha_tot;
             end
 
         end
 
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
         % Returns square boundary quadrature matrix, of dimension
-        % corresponding to the number of boundary points
+        % corresponding to the number of boundary unknowns
         %
         % boundary -- string
         function H = getBoundaryQuadrature(obj, boundary)
             assertIsMember(boundary, {'w', 'e', 's', 'n'})
 
-            switch boundary
-                case {'w','e'}
-                    j = 1;
-                case {'s','n'}
-                    j = 2;
-            end
-            H = obj.H_boundary{j};
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
             I_dim = speye(obj.dim, obj.dim);
             H = kron(H, I_dim);
         end
 
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
         function N = size(obj)
             N = obj.dim*prod(obj.m);
         end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dVariableAnisotropic.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,774 @@
+classdef Elastic2dVariableAnisotropic < scheme.Scheme
+
+% Discretizes the elastic wave equation:
+% rho u_{i,tt} = dj C_{ijkl} dk u_j
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+% Assumes fully compatible operators
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for variable coefficients
+        RHO, RHOi, RHOi_kron % Density
+        C                    % Elastic stiffness tensor
+
+        D  % Total operator
+        D1 % First derivatives
+        % D2 % Second derivatives
+
+        % Boundary operators in cell format, used for BC
+        T_w, T_e, T_s, T_n
+
+        % Traction operators
+        tau_w, tau_e, tau_s, tau_n      % Return vector field
+        tau1_w, tau1_e, tau1_s, tau1_n  % Return scalar field
+        tau2_w, tau2_e, tau2_s, tau2_n  % Return scalar field
+
+        % Inner products
+        H, Hi, Hi_kron, H_1D
+
+        % Boundary inner products (for scalar field)
+        H_w, H_e, H_s, H_n
+
+        % Boundary restriction operators
+        e_w, e_e, e_s, e_n      % Act on vector field, return vector field at boundary
+        e1_w, e1_e, e1_s, e1_n  % Act on vector field, return scalar field at boundary
+        e2_w, e2_e, e2_s, e2_n  % Act on vector field, return scalar field at boundary
+        e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field
+
+        % E{i}^T picks out component i
+        E
+
+        % Borrowing constants of the form gamma*h, where gamma is a dimensionless constant.
+        h11 % First entry in norm matrix
+
+    end
+
+    methods
+
+        % The coefficients can either be function handles or grid functions
+        % optFlag -- if true, extra computations are performed, which may be helpful for optimization.
+        function obj = Elastic2dVariableAnisotropic(g, order, rho, C, opSet, optFlag, hollow)
+            default_arg('hollow', false);
+            default_arg('rho', @(x,y) 0*x+1);
+            default_arg('opSet',{@sbp.D2VariableCompatible, @sbp.D2VariableCompatible});
+            default_arg('optFlag', false);
+            dim = 2;
+
+            C_default = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C_default{i,j,k,l} = @(x,y) 0*x + 1;
+                        end
+                    end
+                end
+            end
+            default_arg('C', C_default);
+            assert(isa(g, 'grid.Cartesian'))
+
+            if isa(rho, 'function_handle')
+                rho = grid.evalOn(g, rho);
+            end
+
+            C_mat = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            if isa(C{i,j,k,l}, 'function_handle')
+                                C{i,j,k,l} = grid.evalOn(g, C{i,j,k,l});
+                            end
+                            C_mat{i,j,k,l} = spdiag(C{i,j,k,l});
+                        end
+                    end
+                end
+            end
+            obj.C = C_mat;
+
+            m = g.size();
+            m_tot = g.N();
+            lim = g.lim;
+            if isempty(lim)
+                x = g.x;
+                lim = cell(length(x),1);
+                for i = 1:length(x)
+                    lim{i} = {min(x{i}), max(x{i})};
+                end
+            end
+
+            % 1D operators
+            ops = cell(dim,1);
+            opsHollow = cell(dim,1);
+            h = zeros(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), lim{i}, order);
+                h(i) = ops{i}.h;
+                if hollow
+                    opsHollow{i} = sbp.D2VariableCompatibleHollow(m(i), lim{i}, order);
+                end
+            end
+
+            % Borrowing constants
+            for i = 1:dim
+                obj.h11{i} = h(i)*ops{i}.borrowing.H11;
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            D2Hollow = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_0 = cell(dim,1);
+            e_m = cell(dim,1);
+            d1_0 = cell(dim,1);
+            d1_m = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+                if hollow
+                    D2Hollow{i} = opsHollow{i}.D2;
+                end
+                D2{i} = ops{i}.D2;
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_0{i} = ops{i}.e_l;
+                e_m{i} = ops{i}.e_r;
+                d1_0{i} = ops{i}.d1_l;
+                d1_m{i} = ops{i}.d1_r;
+            end
+
+            %====== Assemble full operators ========
+            I_dim = speye(dim, dim);
+            RHO = spdiag(rho);
+            obj.RHO = RHO;
+            obj.RHOi = inv(RHO);
+            obj.RHOi_kron = kron(obj.RHOi, I_dim);
+
+            obj.D1 = cell(dim,1);
+            D2_temp = cell(dim,dim,dim);
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            % Boundary restriction operators
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            e_l{1} = kron(e_0{1}, I{2});
+            e_l{2} = kron(I{1}, e_0{2});
+            e_r{1} = kron(e_m{1}, I{2});
+            e_r{2} = kron(I{1}, e_m{2});
+
+            e_scalar_w = e_l{1};
+            e_scalar_e = e_r{1};
+            e_scalar_s = e_l{2};
+            e_scalar_n = e_r{2};
+
+            e_w = kron(e_scalar_w, I_dim);
+            e_e = kron(e_scalar_e, I_dim);
+            e_s = kron(e_scalar_s, I_dim);
+            e_n = kron(e_scalar_n, I_dim);
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye(m_tot,m_tot);
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(I,e);
+            end
+            obj.E = E;
+
+            e1_w = (e_scalar_w'*E{1}')';
+            e1_e = (e_scalar_e'*E{1}')';
+            e1_s = (e_scalar_s'*E{1}')';
+            e1_n = (e_scalar_n'*E{1}')';
+
+            e2_w = (e_scalar_w'*E{2}')';
+            e2_e = (e_scalar_e'*E{2}')';
+            e2_s = (e_scalar_s'*E{2}')';
+            e2_n = (e_scalar_n'*E{2}')';
+
+
+            % D2
+            switch order
+            case 2
+                width = 3;
+                nBP = 2;
+            case 4
+                width = 5;
+                nBP = 6;
+            case 6
+                width = 7;
+                nBP = 9;
+            end
+            for j = 1:dim
+                for k = 1:dim
+                    for l = 1:dim
+                        if hollow
+                            D2_temp{j,k,l} = sparse(m_tot, m_tot);
+                        else
+                            D2_temp{j,k,l} = spalloc(m_tot, m_tot, width*m_tot);
+                        end
+                    end
+                end
+            end
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            k = 1;
+            if hollow
+                mask = sparse(m(1), m(1));
+                mask(1:nBP, 1:nBP) = speye(nBP, nBP);
+                mask(end-nBP+1:end, end-nBP+1:end) = speye(nBP, nBP);
+                maskXSmall = kron(mask, speye(m(2), m(2)));
+                maskX = E{1}*maskXSmall*E{1}' + E{2}*maskXSmall*E{2}';
+            end
+            for r = 1:m(2)
+                p = ind(:,r);
+                for j = 1:dim
+                    for l = 1:dim
+                        coeff = C{k,j,k,l};
+                        if hollow && r > nBP && r < m(2) - nBP + 1
+                            D_kk = D2Hollow{1}(coeff(p));
+                        else
+                            D_kk = D2{1}(coeff(p));
+                        end
+                        D2_temp{j,k,l}(p,p) = D_kk;
+                    end
+                end
+            end
+
+            k = 2;
+            if hollow
+                mask = sparse(m(2), m(2));
+                mask(1:nBP, 1:nBP) = speye(nBP, nBP);
+                mask(end-nBP+1:end, end-nBP+1:end) = speye(nBP, nBP);
+                maskYSmall = kron(speye(m(1), m(1)), mask);
+
+                maskY = E{1}*maskYSmall*E{1}' + E{2}*maskYSmall*E{2}';
+                mask = maskX + maskY;
+                mask = mask>0;
+
+                maskSmall = maskXSmall + maskYSmall;
+                maskSmall = maskSmall>0;
+            end
+            for r = 1:m(1)
+                p = ind(r,:);
+                for j = 1:dim
+                    for l = 1:dim
+                        coeff = C{k,j,k,l};
+                        if hollow && r > nBP && r < m(1) - nBP + 1
+                            D_kk = D2Hollow{2}(coeff(p));
+                        else
+                            D_kk = D2{2}(coeff(p));
+                        end
+                        D2_temp{j,k,l}(p,p) = D_kk;
+                    end
+                end
+            end
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.Hi = inv(obj.H);
+            obj.H_w = H{2};
+            obj.H_e = H{2};
+            obj.H_s = H{1};
+            obj.H_n = H{1};
+            obj.H_1D = {H{1}, H{2}};
+
+            % Differentiation matrix D (without SAT)
+            D1 = obj.D1;
+            D = sparse(dim*m_tot,dim*m_tot);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            if i == k
+                                D = D + E{j}*D2_temp{j,k,l}*E{l}';
+                                D2_temp{j,k,l} = [];
+                            else
+                                if hollow
+                                    D = D + E{j}*(maskSmall*D1{i})*C_mat{i,j,k,l}*D1{k}*E{l}';
+                                else
+                                    D = D + E{j}*(D1{i})*C_mat{i,j,k,l}*D1{k}*E{l}';
+                                end
+                            end
+                        end
+                    end
+                end
+            end
+            clear D2_temp;
+            if hollow
+                mask = maskX + maskY;
+                mask = mask>0;
+                D = mask*D;
+            end
+            D = obj.RHOi_kron*D;
+            obj.D = D;
+            clear D;
+            %=========================================%'
+
+            % Numerical traction operators for BC.
+            %
+            % Formula at boundary j: % tau^{j}_i = sum_l T^{j}_{il} u_l
+            %
+            T_l = cell(dim,1);
+            T_r = cell(dim,1);
+            tau_l = cell(dim,1);
+            tau_r = cell(dim,1);
+
+            D1 = obj.D1;
+
+            % Boundary j
+            for j = 1:dim
+                T_l{j} = cell(dim,dim);
+                T_r{j} = cell(dim,dim);
+                tau_l{j} = cell(dim,1);
+                tau_r{j} = cell(dim,1);
+
+                [~, n_l] = size(e_l{j});
+                [~, n_r] = size(e_r{j});
+
+                % Traction component i
+                for i = 1:dim
+                    tau_l{j}{i} = sparse(dim*m_tot, n_l);
+                    tau_r{j}{i} = sparse(dim*m_tot, n_r);
+
+                    % Displacement component l
+                    for l = 1:dim
+                        T_l{j}{i,l} = sparse(m_tot, n_l);
+                        T_r{j}{i,l} = sparse(m_tot, n_r);
+
+                        % Derivative direction k
+                        for k = 1:dim
+                            T_l{j}{i,l} = T_l{j}{i,l} ...
+                                        - (e_l{j}'*C_mat{j,i,k,l}*D1{k})';
+                            T_r{j}{i,l} = T_r{j}{i,l} ...
+                                        + (e_r{j}'*C_mat{j,i,k,l}*D1{k})';
+                        end
+                        tau_l{j}{i} = tau_l{j}{i} + (T_l{j}{i,l}'*E{l}')';
+                        tau_r{j}{i} = tau_r{j}{i} + (T_r{j}{i,l}'*E{l}')';
+                    end
+                end
+            end
+
+            % Traction tensors, T_ij
+            obj.T_w = T_l{1};
+            obj.T_e = T_r{1};
+            obj.T_s = T_l{2};
+            obj.T_n = T_r{2};
+
+            % Restriction operators
+            obj.e_w = e_w;
+            obj.e_e = e_e;
+            obj.e_s = e_s;
+            obj.e_n = e_n;
+
+            obj.e1_w = e1_w;
+            obj.e1_e = e1_e;
+            obj.e1_s = e1_s;
+            obj.e1_n = e1_n;
+
+            obj.e2_w = e2_w;
+            obj.e2_e = e2_e;
+            obj.e2_s = e2_s;
+            obj.e2_n = e2_n;
+
+            obj.e_scalar_w = e_scalar_w;
+            obj.e_scalar_e = e_scalar_e;
+            obj.e_scalar_s = e_scalar_s;
+            obj.e_scalar_n = e_scalar_n;
+
+            % First component of traction
+            obj.tau1_w = tau_l{1}{1};
+            obj.tau1_e = tau_r{1}{1};
+            obj.tau1_s = tau_l{2}{1};
+            obj.tau1_n = tau_r{2}{1};
+
+            % Second component of traction
+            obj.tau2_w = tau_l{1}{2};
+            obj.tau2_e = tau_r{1}{2};
+            obj.tau2_s = tau_l{2}{2};
+            obj.tau2_n = tau_r{2}{2};
+
+            % Traction vectors
+            obj.tau_w = (e_w'*e1_w*obj.tau1_w')' + (e_w'*e2_w*obj.tau2_w')';
+            obj.tau_e = (e_e'*e1_e*obj.tau1_e')' + (e_e'*e2_e*obj.tau2_e')';
+            obj.tau_s = (e_s'*e1_s*obj.tau1_s')' + (e_s'*e2_s*obj.tau2_s')';
+            obj.tau_n = (e_n'*e1_n*obj.tau1_n')' + (e_n'*e2_n*obj.tau2_n')';
+
+            % Kroneckered norms and coefficients
+            obj.Hi_kron = kron(obj.Hi, I_dim);
+
+            % Misc.
+            obj.m = m;
+            obj.h = h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+
+        % For displacement bc:
+        % bc = {comp, 'd', dComps},
+        % where
+        % dComps = vector of components with displacement BC. Default: 1:dim.
+        % In this way, we can specify one BC at a time even though the SATs depend on all BC.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.0);
+
+            assert( iscell(bc), 'The BC type must be a 2x1 or 3x1 cell array' );
+            comp = bc{1};
+            type = bc{2};
+            if ischar(comp)
+                comp = obj.getComponent(comp, boundary);
+            end
+
+            e       = obj.getBoundaryOperatorForScalarField('e', boundary);
+            tau     = obj.getBoundaryOperator(['tau' num2str(comp)], boundary);
+            T       = obj.getBoundaryTractionOperator(boundary);
+            h11     = obj.getBorrowing(boundary);
+            H_gamma = obj.getBoundaryQuadratureForScalarField(boundary);
+            nu      = obj.getNormal(boundary);
+
+            E = obj.E;
+            Hi = obj.Hi;
+            RHOi = obj.RHOi;
+            C = obj.C;
+
+            dim = obj.dim;
+            m_tot = obj.grid.N();
+
+            % Preallocate
+            [~, col] = size(tau);
+            closure = sparse(dim*m_tot, dim*m_tot);
+            penalty = sparse(dim*m_tot, col);
+
+            j = comp;
+            switch type
+
+            % Dirichlet boundary condition
+            case {'D','d','dirichlet','Dirichlet','displacement','Displacement'}
+
+                if numel(bc) >= 3
+                    dComps = bc{3};
+                else
+                    dComps = 1:dim;
+                end
+
+                % Loops over components that Dirichlet penalties end up on
+                % Y: symmetrizing part of penalty
+                % Z: symmetric part of penalty
+                % X = Y + Z.
+
+                % Nonsymmetric part goes on all components to
+                % yield traction in discrete energy rate
+                for i = 1:dim
+                    Y = T{j,i}';
+                    X = e*Y;
+                    closure = closure + E{i}*RHOi*Hi*X'*e*H_gamma*(e'*E{j}' );
+                    penalty = penalty - E{i}*RHOi*Hi*X'*e*H_gamma;
+                end
+
+                % Symmetric part only required on components with displacement BC.
+                % (Otherwise it's not symmetric.)
+                for i = dComps
+                    Z = sparse(m_tot, m_tot);
+                    for l = 1:dim
+                        for k = 1:dim
+                            Z = Z + nu(l)*C{l,i,k,j}*nu(k);
+                        end
+                    end
+                    Z = -tuning*dim/h11*Z;
+                    X = Z;
+                    closure = closure + E{i}*RHOi*Hi*X'*e*H_gamma*(e'*E{j}' );
+                    penalty = penalty - E{i}*RHOi*Hi*X'*e*H_gamma;
+                end
+
+            % Free boundary condition
+            case {'F','f','Free','free','traction','Traction','t','T'}
+                    closure = closure - E{j}*RHOi*Hi*e*H_gamma*tau';
+                    penalty = penalty + E{j}*RHOi*Hi*e*H_gamma;
+
+            % Unknown boundary condition
+            otherwise
+                error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.0
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            switch type.interpolation
+            case {'none', ''}
+                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            case {'op','OP'}
+                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            otherwise
+                error('Unknown type of interpolation: %s ', type.interpolation);
+            end
+        end
+
+        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+
+            u = obj;
+            v = neighbour_scheme;
+
+            % Operators, u side
+            e_u       = u.getBoundaryOperatorForScalarField('e', boundary);
+            tau_u     = u.getBoundaryOperator('tau', boundary);
+            h11_u     = u.getBorrowing(boundary);
+            nu_u      = u.getNormal(boundary);
+
+            E_u = u.E;
+            C_u = u.C;
+            m_tot_u = u.grid.N();
+
+            % Operators, v side
+            e_v       = v.getBoundaryOperatorForScalarField('e', neighbour_boundary);
+            tau_v     = v.getBoundaryOperator('tau', neighbour_boundary);
+            h11_v     = v.getBorrowing(neighbour_boundary);
+            nu_v      = v.getNormal(neighbour_boundary);
+
+            E_v = v.E;
+            C_v = v.C;
+            m_tot_v = v.grid.N();
+
+            % Fix {'e', 's'}, {'w', 'n'}, and {'x','x'} couplings
+            flipFlag = false;
+            e_v_flip = e_v;
+            if (strcmp(boundary,'s') && strcmp(neighbour_boundary,'e')) || ...
+               (strcmp(boundary,'e') && strcmp(neighbour_boundary,'s')) || ...
+               (strcmp(boundary,'w') && strcmp(neighbour_boundary,'n')) || ...
+               (strcmp(boundary,'n') && strcmp(neighbour_boundary,'w')) || ...
+               (strcmp(boundary,'s') && strcmp(neighbour_boundary,'s')) || ...
+               (strcmp(boundary,'n') && strcmp(neighbour_boundary,'n')) || ...
+               (strcmp(boundary,'w') && strcmp(neighbour_boundary,'w')) || ...
+               (strcmp(boundary,'e') && strcmp(neighbour_boundary,'e'))
+
+                flipFlag = true;
+                e_v_flip = fliplr(e_v);
+
+                t1 = tau_v(:,1:2:end-1);
+                t2 = tau_v(:,2:2:end);
+
+                t1 = fliplr(t1);
+                t2 = fliplr(t2);
+
+                tau_v(:,1:2:end-1) = t1;
+                tau_v(:,2:2:end) = t2;
+            end
+
+            % Operators that are only required for own domain
+            Hi      = u.Hi_kron;
+            RHOi    = u.RHOi_kron;
+            e_kron  = u.getBoundaryOperator('e', boundary);
+            T_u     = u.getBoundaryTractionOperator(boundary);
+
+            % Shared operators
+            H_gamma         = u.getBoundaryQuadratureForScalarField(boundary);
+            H_gamma_kron    = u.getBoundaryQuadrature(boundary);
+            dim             = u.dim;
+
+            % Preallocate
+            [~, m_int] = size(H_gamma);
+            closure = sparse(dim*m_tot_u, dim*m_tot_u);
+            penalty = sparse(dim*m_tot_u, dim*m_tot_v);
+
+            % ---- Continuity of displacement ------
+
+            % Y: symmetrizing part of penalty
+            % Z: symmetric part of penalty
+            % X = Y + Z.
+
+            % Loop over components to couple across interface
+            for j = 1:dim
+
+                % Loop over components that penalties end up on
+                for i = 1:dim
+                    Y = 1/2*T_u{j,i}';
+                    Z_u = sparse(m_int, m_int);
+                    Z_v = sparse(m_int, m_int);
+                    for l = 1:dim
+                        for k = 1:dim
+                            Z_u = Z_u + e_u'*nu_u(l)*C_u{l,i,k,j}*nu_u(k)*e_u;
+                            Z_v = Z_v + e_v'*nu_v(l)*C_v{l,i,k,j}*nu_v(k)*e_v;
+                        end
+                    end
+
+                    if flipFlag
+                        Z_v = rot90(Z_v,2);
+                    end
+
+                    Z = -tuning*dim*( 1/(4*h11_u)*Z_u + 1/(4*h11_v)*Z_v );
+                    X = Y + Z*e_u';
+                    closure = closure + E_u{i}*X'*H_gamma*e_u'*E_u{j}';
+                    penalty = penalty - E_u{i}*X'*H_gamma*e_v_flip'*E_v{j}';
+
+                end
+            end
+
+            % ---- Continuity of traction ------
+            closure = closure - 1/2*e_kron*H_gamma_kron*tau_u';
+            penalty = penalty - 1/2*e_kron*H_gamma_kron*tau_v';
+
+            % ---- Multiply by inverse of density x quadraure ----
+            closure = RHOi*Hi*closure;
+            penalty = RHOi*Hi*penalty;
+
+        end
+
+        function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            error('Non-conforming interfaces not implemented yet.');
+        end
+
+        % Returns the component number that is the tangential/normal component
+        % at the specified boundary
+        function comp = getComponent(obj, comp_str, boundary)
+            assertIsMember(comp_str, {'normal', 'tangential'});
+            assertIsMember(boundary, {'w', 'e', 's', 'n'});
+
+            switch boundary
+            case {'w', 'e'}
+                switch comp_str
+                case 'normal'
+                    comp = 1;
+                case 'tangential'
+                    comp = 2;
+                end
+            case {'s', 'n'}
+                switch comp_str
+                case 'normal'
+                    comp = 2;
+                case 'tangential'
+                    comp = 1;
+                end
+            end
+        end
+
+        % Returns h11 for the boundary specified by the string boundary.
+        % op -- string
+        function h11 = getBorrowing(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case {'w','e'}
+                h11 = obj.h11{1};
+            case {'s', 'n'}
+                h11 = obj.h11{2};
+            end
+        end
+
+        % Returns the outward unit normal vector for the boundary specified by the string boundary.
+        function nu = getNormal(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case 'w'
+                nu = [-1,0];
+            case 'e'
+                nu = [1,0];
+            case 's'
+                nu = [0,-1];
+            case 'n'
+                nu = [0,1];
+            end
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'})
+
+            switch op
+                case {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'}
+                    o = obj.([op, '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e'})
+
+            switch op
+
+                case 'e'
+                    o = obj.(['e_scalar', '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary unknowns
+        %
+        % boundary -- string
+        function H = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
+            I_dim = speye(obj.dim, obj.dim);
+            H = kron(H, I_dim);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dVariableAnisotropicMixedStencil.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,735 @@
+classdef Elastic2dVariableAnisotropicMixedStencil < scheme.Scheme
+
+% Discretizes the elastic wave equation:
+% rho u_{i,tt} = dj C_{ijkl} dk u_j
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+% Assumes fully compatible operators
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for variable coefficients
+        RHO, RHOi, RHOi_kron % Density
+        C, C_D1, C_D2           % Elastic stiffness tensor, C = C_D1 + C_D2.
+
+        D  % Total operator
+        D1 % First derivatives
+        % D2 % Second derivatives
+
+        % Boundary operators in cell format, used for BC
+        T_w, T_e, T_s, T_n
+
+        % Traction operators
+        tau_w, tau_e, tau_s, tau_n      % Return vector field
+        tau1_w, tau1_e, tau1_s, tau1_n  % Return scalar field
+        tau2_w, tau2_e, tau2_s, tau2_n  % Return scalar field
+
+        % Inner products
+        H, Hi, Hi_kron, H_1D
+
+        % Boundary inner products (for scalar field)
+        H_w, H_e, H_s, H_n
+
+        % Boundary restriction operators
+        e_w, e_e, e_s, e_n      % Act on vector field, return vector field at boundary
+        e1_w, e1_e, e1_s, e1_n  % Act on vector field, return scalar field at boundary
+        e2_w, e2_e, e2_s, e2_n  % Act on vector field, return scalar field at boundary
+        e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field
+
+        % E{i}^T picks out component i
+        E
+
+        % Borrowing constants of the form gamma*h, where gamma is a dimensionless constant.
+        h11 % First entry in norm matrix
+
+    end
+
+    methods
+
+        % Uses D1*D1 for the C_D1 part of the stiffness tensor C
+        % Uses narrow D2 whenever possible for the C_D2 part of C
+        % The coefficients can either be function handles or grid functions
+        function obj = Elastic2dVariableAnisotropicMixedStencil(g, order, rho, C_D1, C_D2, opSet)
+            default_arg('rho', @(x,y) 0*x+1);
+            default_arg('opSet',{@sbp.D2VariableCompatible, @sbp.D2VariableCompatible});
+            default_arg('optFlag', false);
+            dim = 2;
+
+            C_D1_default = cell(dim,dim,dim,dim);
+            C_D2_default = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C_D1_default{i,j,k,l} = @(x,y) 0*x + 0;
+                            C_D2_default{i,j,k,l} = @(x,y) 0*x + 1;
+                        end
+                    end
+                end
+            end
+            default_arg('C_D1', C_D1_default);
+            default_arg('C_D2', C_D2_default);
+            assert(isa(g, 'grid.Cartesian'))
+
+            if isa(rho, 'function_handle')
+                rho = grid.evalOn(g, rho);
+            end
+
+            C_mat = cell(dim,dim,dim,dim);
+            C_D1_mat = cell(dim,dim,dim,dim);
+            C_D2_mat = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            if isa(C_D1{i,j,k,l}, 'function_handle')
+                                C_D1{i,j,k,l} = grid.evalOn(g, C_D1{i,j,k,l});
+                            end
+                            if isa(C_D2{i,j,k,l}, 'function_handle')
+                                C_D2{i,j,k,l} = grid.evalOn(g, C_D2{i,j,k,l});
+                            end
+                            C_D1_mat{i,j,k,l} = spdiag(C_D1{i,j,k,l});
+                            C_D2_mat{i,j,k,l} = spdiag(C_D2{i,j,k,l});
+                            C_mat{i,j,k,l} = C_D1_mat{i,j,k,l} + C_D2_mat{i,j,k,l};
+                        end
+                    end
+                end
+            end
+            obj.C = C_mat;
+            obj.C_D1 = C_D1_mat;
+            obj.C_D2 = C_D2_mat;
+
+            m = g.size();
+            m_tot = g.N();
+            lim = g.lim;
+            if isempty(lim)
+                x = g.x;
+                lim = cell(length(x),1);
+                for i = 1:length(x)
+                    lim{i} = {min(x{i}), max(x{i})};
+                end
+            end
+
+            % 1D operators
+            ops = cell(dim,1);
+            h = zeros(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), lim{i}, order);
+                h(i) = ops{i}.h;
+            end
+
+            % Borrowing constants
+            for i = 1:dim
+                obj.h11{i} = h(i)*ops{i}.borrowing.H11;
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_0 = cell(dim,1);
+            e_m = cell(dim,1);
+            d1_0 = cell(dim,1);
+            d1_m = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+                D2{i} = ops{i}.D2;
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_0{i} = ops{i}.e_l;
+                e_m{i} = ops{i}.e_r;
+                d1_0{i} = ops{i}.d1_l;
+                d1_m{i} = ops{i}.d1_r;
+            end
+
+            %====== Assemble full operators ========
+            I_dim = speye(dim, dim);
+            RHO = spdiag(rho);
+            obj.RHO = RHO;
+            obj.RHOi = inv(RHO);
+            obj.RHOi_kron = kron(obj.RHOi, I_dim);
+
+            obj.D1 = cell(dim,1);
+            D2_temp = cell(dim,dim,dim);
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            % Boundary restriction operators
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            e_l{1} = kron(e_0{1}, I{2});
+            e_l{2} = kron(I{1}, e_0{2});
+            e_r{1} = kron(e_m{1}, I{2});
+            e_r{2} = kron(I{1}, e_m{2});
+
+            e_scalar_w = e_l{1};
+            e_scalar_e = e_r{1};
+            e_scalar_s = e_l{2};
+            e_scalar_n = e_r{2};
+
+            e_w = kron(e_scalar_w, I_dim);
+            e_e = kron(e_scalar_e, I_dim);
+            e_s = kron(e_scalar_s, I_dim);
+            e_n = kron(e_scalar_n, I_dim);
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye(m_tot,m_tot);
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(I,e);
+            end
+            obj.E = E;
+
+            e1_w = (e_scalar_w'*E{1}')';
+            e1_e = (e_scalar_e'*E{1}')';
+            e1_s = (e_scalar_s'*E{1}')';
+            e1_n = (e_scalar_n'*E{1}')';
+
+            e2_w = (e_scalar_w'*E{2}')';
+            e2_e = (e_scalar_e'*E{2}')';
+            e2_s = (e_scalar_s'*E{2}')';
+            e2_n = (e_scalar_n'*E{2}')';
+
+
+            % D2
+            switch order
+            case 2
+                width = 3;
+            case 4
+                width = 5;
+            case 6
+                width = 7;
+            end
+            for j = 1:dim
+                for k = 1:dim
+                    for l = 1:dim
+                        D2_temp{j,k,l} = spalloc(m_tot, m_tot, width*m_tot);
+                    end
+                end
+            end
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            k = 1;
+            for r = 1:m(2)
+                p = ind(:,r);
+                for j = 1:dim
+                    for l = 1:dim
+                        coeff = C_D2{k,j,k,l};
+                        D_kk = D2{1}(coeff(p));
+                        D2_temp{j,k,l}(p,p) = D_kk;
+                    end
+                end
+            end
+
+            k = 2;
+            for r = 1:m(1)
+                p = ind(r,:);
+                for j = 1:dim
+                    for l = 1:dim
+                        coeff = C_D2{k,j,k,l};
+                        D_kk = D2{2}(coeff(p));
+                        D2_temp{j,k,l}(p,p) = D_kk;
+                    end
+                end
+            end
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.Hi = inv(obj.H);
+            obj.H_w = H{2};
+            obj.H_e = H{2};
+            obj.H_s = H{1};
+            obj.H_n = H{1};
+            obj.H_1D = {H{1}, H{2}};
+
+            % Differentiation matrix D (without SAT)
+            D1 = obj.D1;
+            D = sparse(dim*m_tot,dim*m_tot);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            if i == k
+                                D = D + E{j}*D2_temp{j,k,l}*E{l}';
+                                D2_temp{j,k,l} = [];
+                            else
+                                D = D + E{j}*D1{i}*C_D2_mat{i,j,k,l}*D1{k}*E{l}';
+                            end
+                            D = D + E{j}*D1{i}*C_D1_mat{i,j,k,l}*D1{k}*E{l}';
+                        end
+                    end
+                end
+            end
+            clear D2_temp;
+            D = obj.RHOi_kron*D;
+            obj.D = D;
+            clear D;
+            %=========================================%'
+
+            % Numerical traction operators for BC.
+            %
+            % Formula at boundary j: % tau^{j}_i = sum_l T^{j}_{il} u_l
+            %
+            T_l = cell(dim,1);
+            T_r = cell(dim,1);
+            tau_l = cell(dim,1);
+            tau_r = cell(dim,1);
+
+            D1 = obj.D1;
+
+            % Boundary j
+            for j = 1:dim
+                T_l{j} = cell(dim,dim);
+                T_r{j} = cell(dim,dim);
+                tau_l{j} = cell(dim,1);
+                tau_r{j} = cell(dim,1);
+
+                [~, n_l] = size(e_l{j});
+                [~, n_r] = size(e_r{j});
+
+                % Traction component i
+                for i = 1:dim
+                    tau_l{j}{i} = sparse(dim*m_tot, n_l);
+                    tau_r{j}{i} = sparse(dim*m_tot, n_r);
+
+                    % Displacement component l
+                    for l = 1:dim
+                        T_l{j}{i,l} = sparse(m_tot, n_l);
+                        T_r{j}{i,l} = sparse(m_tot, n_r);
+
+                        % Derivative direction k
+                        for k = 1:dim
+                            T_l{j}{i,l} = T_l{j}{i,l} ...
+                                        - (e_l{j}'*C_mat{j,i,k,l}*D1{k})';
+                            T_r{j}{i,l} = T_r{j}{i,l} ...
+                                        + (e_r{j}'*C_mat{j,i,k,l}*D1{k})';
+                        end
+                        tau_l{j}{i} = tau_l{j}{i} + (T_l{j}{i,l}'*E{l}')';
+                        tau_r{j}{i} = tau_r{j}{i} + (T_r{j}{i,l}'*E{l}')';
+                    end
+                end
+            end
+
+            % Traction tensors, T_ij
+            obj.T_w = T_l{1};
+            obj.T_e = T_r{1};
+            obj.T_s = T_l{2};
+            obj.T_n = T_r{2};
+
+            % Restriction operators
+            obj.e_w = e_w;
+            obj.e_e = e_e;
+            obj.e_s = e_s;
+            obj.e_n = e_n;
+
+            obj.e1_w = e1_w;
+            obj.e1_e = e1_e;
+            obj.e1_s = e1_s;
+            obj.e1_n = e1_n;
+
+            obj.e2_w = e2_w;
+            obj.e2_e = e2_e;
+            obj.e2_s = e2_s;
+            obj.e2_n = e2_n;
+
+            obj.e_scalar_w = e_scalar_w;
+            obj.e_scalar_e = e_scalar_e;
+            obj.e_scalar_s = e_scalar_s;
+            obj.e_scalar_n = e_scalar_n;
+
+            % First component of traction
+            obj.tau1_w = tau_l{1}{1};
+            obj.tau1_e = tau_r{1}{1};
+            obj.tau1_s = tau_l{2}{1};
+            obj.tau1_n = tau_r{2}{1};
+
+            % Second component of traction
+            obj.tau2_w = tau_l{1}{2};
+            obj.tau2_e = tau_r{1}{2};
+            obj.tau2_s = tau_l{2}{2};
+            obj.tau2_n = tau_r{2}{2};
+
+            % Traction vectors
+            obj.tau_w = (e_w'*e1_w*obj.tau1_w')' + (e_w'*e2_w*obj.tau2_w')';
+            obj.tau_e = (e_e'*e1_e*obj.tau1_e')' + (e_e'*e2_e*obj.tau2_e')';
+            obj.tau_s = (e_s'*e1_s*obj.tau1_s')' + (e_s'*e2_s*obj.tau2_s')';
+            obj.tau_n = (e_n'*e1_n*obj.tau1_n')' + (e_n'*e2_n*obj.tau2_n')';
+
+            % Kroneckered norms and coefficients
+            obj.Hi_kron = kron(obj.Hi, I_dim);
+
+            % Misc.
+            obj.m = m;
+            obj.h = h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+
+        % For displacement bc:
+        % bc = {comp, 'd', dComps},
+        % where
+        % dComps = vector of components with displacement BC. Default: 1:dim.
+        % In this way, we can specify one BC at a time even though the SATs depend on all BC.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.0);
+
+            assert( iscell(bc), 'The BC type must be a 2x1 or 3x1 cell array' );
+            comp = bc{1};
+            type = bc{2};
+            if ischar(comp)
+                comp = obj.getComponent(comp, boundary);
+            end
+
+            e       = obj.getBoundaryOperatorForScalarField('e', boundary);
+            tau     = obj.getBoundaryOperator(['tau' num2str(comp)], boundary);
+            T       = obj.getBoundaryTractionOperator(boundary);
+            h11     = obj.getBorrowing(boundary);
+            H_gamma = obj.getBoundaryQuadratureForScalarField(boundary);
+            nu      = obj.getNormal(boundary);
+
+            E = obj.E;
+            Hi = obj.Hi;
+            RHOi = obj.RHOi;
+            C = obj.C;
+
+            dim = obj.dim;
+            m_tot = obj.grid.N();
+
+            % Preallocate
+            [~, col] = size(tau);
+            closure = sparse(dim*m_tot, dim*m_tot);
+            penalty = sparse(dim*m_tot, col);
+
+            j = comp;
+            switch type
+
+            % Dirichlet boundary condition
+            case {'D','d','dirichlet','Dirichlet','displacement','Displacement'}
+
+                if numel(bc) >= 3
+                    dComps = bc{3};
+                else
+                    dComps = 1:dim;
+                end
+
+                % Loops over components that Dirichlet penalties end up on
+                % Y: symmetrizing part of penalty
+                % Z: symmetric part of penalty
+                % X = Y + Z.
+
+                % Nonsymmetric part goes on all components to
+                % yield traction in discrete energy rate
+                for i = 1:dim
+                    Y = T{j,i}';
+                    X = e*Y;
+                    closure = closure + E{i}*RHOi*Hi*X'*e*H_gamma*(e'*E{j}' );
+                    penalty = penalty - E{i}*RHOi*Hi*X'*e*H_gamma;
+                end
+
+                % Symmetric part only required on components with displacement BC.
+                % (Otherwise it's not symmetric.)
+                for i = dComps
+                    Z = sparse(m_tot, m_tot);
+                    for l = 1:dim
+                        for k = 1:dim
+                            Z = Z + nu(l)*C{l,i,k,j}*nu(k);
+                        end
+                    end
+                    Z = -tuning*dim/h11*Z;
+                    X = Z;
+                    closure = closure + E{i}*RHOi*Hi*X'*e*H_gamma*(e'*E{j}' );
+                    penalty = penalty - E{i}*RHOi*Hi*X'*e*H_gamma;
+                end
+
+            % Free boundary condition
+            case {'F','f','Free','free','traction','Traction','t','T'}
+                    closure = closure - E{j}*RHOi*Hi*e*H_gamma*tau';
+                    penalty = penalty + E{j}*RHOi*Hi*e*H_gamma;
+
+            % Unknown boundary condition
+            otherwise
+                error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.0
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            switch type.interpolation
+            case {'none', ''}
+                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            case {'op','OP'}
+                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            otherwise
+                error('Unknown type of interpolation: %s ', type.interpolation);
+            end
+        end
+
+        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+
+            u = obj;
+            v = neighbour_scheme;
+
+            % Operators, u side
+            e_u       = u.getBoundaryOperatorForScalarField('e', boundary);
+            tau_u     = u.getBoundaryOperator('tau', boundary);
+            h11_u     = u.getBorrowing(boundary);
+            nu_u      = u.getNormal(boundary);
+
+            E_u = u.E;
+            C_u = u.C;
+            m_tot_u = u.grid.N();
+
+            % Operators, v side
+            e_v       = v.getBoundaryOperatorForScalarField('e', neighbour_boundary);
+            tau_v     = v.getBoundaryOperator('tau', neighbour_boundary);
+            h11_v     = v.getBorrowing(neighbour_boundary);
+            nu_v      = v.getNormal(neighbour_boundary);
+
+            E_v = v.E;
+            C_v = v.C;
+            m_tot_v = v.grid.N();
+
+            % Fix {'e', 's'}, {'w', 'n'}, and {'x','x'} couplings
+            flipFlag = false;
+            e_v_flip = e_v;
+            if (strcmp(boundary,'s') && strcmp(neighbour_boundary,'e')) || ...
+               (strcmp(boundary,'e') && strcmp(neighbour_boundary,'s')) || ...
+               (strcmp(boundary,'w') && strcmp(neighbour_boundary,'n')) || ...
+               (strcmp(boundary,'n') && strcmp(neighbour_boundary,'w')) || ...
+               (strcmp(boundary,'s') && strcmp(neighbour_boundary,'s')) || ...
+               (strcmp(boundary,'n') && strcmp(neighbour_boundary,'n')) || ...
+               (strcmp(boundary,'w') && strcmp(neighbour_boundary,'w')) || ...
+               (strcmp(boundary,'e') && strcmp(neighbour_boundary,'e'))
+
+                flipFlag = true;
+                e_v_flip = fliplr(e_v);
+
+                t1 = tau_v(:,1:2:end-1);
+                t2 = tau_v(:,2:2:end);
+
+                t1 = fliplr(t1);
+                t2 = fliplr(t2);
+
+                tau_v(:,1:2:end-1) = t1;
+                tau_v(:,2:2:end) = t2;
+            end
+
+            % Operators that are only required for own domain
+            Hi      = u.Hi_kron;
+            RHOi    = u.RHOi_kron;
+            e_kron  = u.getBoundaryOperator('e', boundary);
+            T_u     = u.getBoundaryTractionOperator(boundary);
+
+            % Shared operators
+            H_gamma         = u.getBoundaryQuadratureForScalarField(boundary);
+            H_gamma_kron    = u.getBoundaryQuadrature(boundary);
+            dim             = u.dim;
+
+            % Preallocate
+            [~, m_int] = size(H_gamma);
+            closure = sparse(dim*m_tot_u, dim*m_tot_u);
+            penalty = sparse(dim*m_tot_u, dim*m_tot_v);
+
+            % ---- Continuity of displacement ------
+
+            % Y: symmetrizing part of penalty
+            % Z: symmetric part of penalty
+            % X = Y + Z.
+
+            % Loop over components to couple across interface
+            for j = 1:dim
+
+                % Loop over components that penalties end up on
+                for i = 1:dim
+                    Y = 1/2*T_u{j,i}';
+                    Z_u = sparse(m_int, m_int);
+                    Z_v = sparse(m_int, m_int);
+                    for l = 1:dim
+                        for k = 1:dim
+                            Z_u = Z_u + e_u'*nu_u(l)*C_u{l,i,k,j}*nu_u(k)*e_u;
+                            Z_v = Z_v + e_v'*nu_v(l)*C_v{l,i,k,j}*nu_v(k)*e_v;
+                        end
+                    end
+
+                    if flipFlag
+                        Z_v = rot90(Z_v,2);
+                    end
+
+                    Z = -tuning*dim*( 1/(4*h11_u)*Z_u + 1/(4*h11_v)*Z_v );
+                    X = Y + Z*e_u';
+                    closure = closure + E_u{i}*X'*H_gamma*e_u'*E_u{j}';
+                    penalty = penalty - E_u{i}*X'*H_gamma*e_v_flip'*E_v{j}';
+
+                end
+            end
+
+            % ---- Continuity of traction ------
+            closure = closure - 1/2*e_kron*H_gamma_kron*tau_u';
+            penalty = penalty - 1/2*e_kron*H_gamma_kron*tau_v';
+
+            % ---- Multiply by inverse of density x quadraure ----
+            closure = RHOi*Hi*closure;
+            penalty = RHOi*Hi*penalty;
+
+        end
+
+        function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            error('Non-conforming interfaces not implemented yet.');
+        end
+
+        % Returns the component number that is the tangential/normal component
+        % at the specified boundary
+        function comp = getComponent(obj, comp_str, boundary)
+            assertIsMember(comp_str, {'normal', 'tangential'});
+            assertIsMember(boundary, {'w', 'e', 's', 'n'});
+
+            switch boundary
+            case {'w', 'e'}
+                switch comp_str
+                case 'normal'
+                    comp = 1;
+                case 'tangential'
+                    comp = 2;
+                end
+            case {'s', 'n'}
+                switch comp_str
+                case 'normal'
+                    comp = 2;
+                case 'tangential'
+                    comp = 1;
+                end
+            end
+        end
+
+        % Returns h11 for the boundary specified by the string boundary.
+        % op -- string
+        function h11 = getBorrowing(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case {'w','e'}
+                h11 = obj.h11{1};
+            case {'s', 'n'}
+                h11 = obj.h11{2};
+            end
+        end
+
+        % Returns the outward unit normal vector for the boundary specified by the string boundary.
+        function nu = getNormal(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case 'w'
+                nu = [-1,0];
+            case 'e'
+                nu = [1,0];
+            case 's'
+                nu = [0,-1];
+            case 'n'
+                nu = [0,1];
+            end
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'})
+
+            switch op
+                case {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'}
+                    o = obj.([op, '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e'})
+
+            switch op
+
+                case 'e'
+                    o = obj.(['e_scalar', '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary unknowns
+        %
+        % boundary -- string
+        function H = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
+            I_dim = speye(obj.dim, obj.dim);
+            H = kron(H, I_dim);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dVariableAnisotropicUpwind.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,651 @@
+classdef Elastic2dVariableAnisotropicUpwind < scheme.Scheme
+
+% Discretizes the elastic wave equation:
+% rho u_{i,tt} = dj C_{ijkl} dk u_j
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+% Assumes fully compatible operators
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for variable coefficients
+        RHO, RHOi, RHOi_kron % Density
+        C                    % Elastic stiffness tensor
+
+        D  % Total operator
+        Dp, Dm % First derivatives
+
+        % Boundary operators in cell format, used for BC
+        T_w, T_e, T_s, T_n
+
+        % Traction operators
+        tau_w, tau_e, tau_s, tau_n      % Return vector field
+        tau1_w, tau1_e, tau1_s, tau1_n  % Return scalar field
+        tau2_w, tau2_e, tau2_s, tau2_n  % Return scalar field
+
+        % Inner products
+        H, Hi, Hi_kron, H_1D
+
+        % Boundary inner products (for scalar field)
+        H_w, H_e, H_s, H_n
+
+        % Boundary restriction operators
+        e_w, e_e, e_s, e_n      % Act on vector field, return vector field at boundary
+        e1_w, e1_e, e1_s, e1_n  % Act on vector field, return scalar field at boundary
+        e2_w, e2_e, e2_s, e2_n  % Act on vector field, return scalar field at boundary
+        e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field
+
+        % E{i}^T picks out component i
+        E
+
+        % Borrowing constants of the form gamma*h, where gamma is a dimensionless constant.
+        h11 % First entry in norm matrix
+
+    end
+
+    methods
+
+        % The coefficients can either be function handles or grid functions
+        % optFlag -- if true, extra computations are performed, which may be helpful for optimization.
+        function obj = Elastic2dVariableAnisotropicUpwind(g, order, rho, C, opSet, optFlag)
+            default_arg('rho', @(x,y) 0*x+1);
+            default_arg('opSet',{@sbp.D1Upwind, @sbp.D1Upwind});
+            default_arg('optFlag', false);
+            dim = 2;
+
+            C_default = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C_default{i,j,k,l} = @(x,y) 0*x + 1;
+                        end
+                    end
+                end
+            end
+            default_arg('C', C_default);
+            assert(isa(g, 'grid.Cartesian'))
+
+            if isa(rho, 'function_handle')
+                rho = grid.evalOn(g, rho);
+            end
+
+            C_mat = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            if isa(C{i,j,k,l}, 'function_handle')
+                                C{i,j,k,l} = grid.evalOn(g, C{i,j,k,l});
+                            end
+                            C_mat{i,j,k,l} = spdiag(C{i,j,k,l});
+                        end
+                    end
+                end
+            end
+            obj.C = C_mat;
+
+            m = g.size();
+            m_tot = g.N();
+            lim = g.lim;
+            if isempty(lim)
+                x = g.x;
+                lim = cell(length(x),1);
+                for i = 1:length(x)
+                    lim{i} = {min(x{i}), max(x{i})};
+                end
+            end
+
+            % 1D operators
+            ops = cell(dim,1);
+            h = zeros(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), lim{i}, order);
+                h(i) = ops{i}.h;
+            end
+
+            % Borrowing constants
+            for i = 1:dim
+                obj.h11{i} = ops{i}.H(1,1);
+            end
+
+            I = cell(dim,1);
+            Dp = cell(dim,1);
+            Dm = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_0 = cell(dim,1);
+            e_m = cell(dim,1);
+            d1_0 = cell(dim,1);
+            d1_m = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+
+                if isprop(ops{i}, 'Dp') && isprop(ops{i}, 'Dm')
+                    Dp{i} = ops{i}.Dp;
+                    Dm{i} = ops{i}.Dm;
+                elseif isprop(ops{i}, 'D1')
+                    Dp{i} = ops{i}.D1;
+                    Dm{i} = ops{i}.D1;
+                else
+                    error('opSet does not have Dp and Dm or D1');
+                end
+
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_0{i} = ops{i}.e_l;
+                e_m{i} = ops{i}.e_r;
+                d1_0{i} = (ops{i}.e_l' * Dm{i})';
+                d1_m{i} = (ops{i}.e_r' * Dm{i})';
+            end
+
+            %====== Assemble full operators ========
+            I_dim = speye(dim, dim);
+            RHO = spdiag(rho);
+            obj.RHO = RHO;
+            obj.RHOi = inv(RHO);
+            obj.RHOi_kron = kron(obj.RHOi, I_dim);
+
+            obj.Dp = cell(dim,1);
+            obj.Dm = cell(dim,1);
+
+            % D1
+            obj.Dp{1} = kron(Dp{1},I{2});
+            obj.Dp{2} = kron(I{1},Dp{2});
+            obj.Dm{1} = kron(Dm{1},I{2});
+            obj.Dm{2} = kron(I{1},Dm{2});
+
+            % Boundary restriction operators
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            e_l{1} = kron(e_0{1}, I{2});
+            e_l{2} = kron(I{1}, e_0{2});
+            e_r{1} = kron(e_m{1}, I{2});
+            e_r{2} = kron(I{1}, e_m{2});
+
+            e_scalar_w = e_l{1};
+            e_scalar_e = e_r{1};
+            e_scalar_s = e_l{2};
+            e_scalar_n = e_r{2};
+
+            e_w = kron(e_scalar_w, I_dim);
+            e_e = kron(e_scalar_e, I_dim);
+            e_s = kron(e_scalar_s, I_dim);
+            e_n = kron(e_scalar_n, I_dim);
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye(m_tot,m_tot);
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(I,e);
+            end
+            obj.E = E;
+
+            e1_w = (e_scalar_w'*E{1}')';
+            e1_e = (e_scalar_e'*E{1}')';
+            e1_s = (e_scalar_s'*E{1}')';
+            e1_n = (e_scalar_n'*E{1}')';
+
+            e2_w = (e_scalar_w'*E{2}')';
+            e2_e = (e_scalar_e'*E{2}')';
+            e2_s = (e_scalar_s'*E{2}')';
+            e2_n = (e_scalar_n'*E{2}')';
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.Hi = inv(obj.H);
+            obj.H_w = H{2};
+            obj.H_e = H{2};
+            obj.H_s = H{1};
+            obj.H_n = H{1};
+            obj.H_1D = {H{1}, H{2}};
+
+            % Differentiation matrix D (without SAT)
+            Dp = obj.Dp;
+            Dm = obj.Dm;
+            D = sparse(dim*m_tot,dim*m_tot);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            D = D + E{j}*Dp{i}*C_mat{i,j,k,l}*Dm{k}*E{l}';
+                        end
+                    end
+                end
+            end
+            D = obj.RHOi_kron*D;
+            obj.D = D;
+            %=========================================%'
+
+            % Numerical traction operators for BC.
+            %
+            % Formula at boundary j: % tau^{j}_i = sum_l T^{j}_{il} u_l
+            %
+            T_l = cell(dim,1);
+            T_r = cell(dim,1);
+            tau_l = cell(dim,1);
+            tau_r = cell(dim,1);
+
+            D1 = obj.Dm;
+
+            % Boundary j
+            for j = 1:dim
+                T_l{j} = cell(dim,dim);
+                T_r{j} = cell(dim,dim);
+                tau_l{j} = cell(dim,1);
+                tau_r{j} = cell(dim,1);
+
+                [~, n_l] = size(e_l{j});
+                [~, n_r] = size(e_r{j});
+
+                % Traction component i
+                for i = 1:dim
+                    tau_l{j}{i} = sparse(dim*m_tot, n_l);
+                    tau_r{j}{i} = sparse(dim*m_tot, n_r);
+
+                    % Displacement component l
+                    for l = 1:dim
+                        T_l{j}{i,l} = sparse(m_tot, n_l);
+                        T_r{j}{i,l} = sparse(m_tot, n_r);
+
+                        % Derivative direction k
+                        for k = 1:dim
+                            T_l{j}{i,l} = T_l{j}{i,l} ...
+                                        - (e_l{j}'*C_mat{j,i,k,l}*D1{k})';
+                            T_r{j}{i,l} = T_r{j}{i,l} ...
+                                        + (e_r{j}'*C_mat{j,i,k,l}*D1{k})';
+                        end
+                        tau_l{j}{i} = tau_l{j}{i} + (T_l{j}{i,l}'*E{l}')';
+                        tau_r{j}{i} = tau_r{j}{i} + (T_r{j}{i,l}'*E{l}')';
+                    end
+                end
+            end
+
+            % Traction tensors, T_ij
+            obj.T_w = T_l{1};
+            obj.T_e = T_r{1};
+            obj.T_s = T_l{2};
+            obj.T_n = T_r{2};
+
+            % Restriction operators
+            obj.e_w = e_w;
+            obj.e_e = e_e;
+            obj.e_s = e_s;
+            obj.e_n = e_n;
+
+            obj.e1_w = e1_w;
+            obj.e1_e = e1_e;
+            obj.e1_s = e1_s;
+            obj.e1_n = e1_n;
+
+            obj.e2_w = e2_w;
+            obj.e2_e = e2_e;
+            obj.e2_s = e2_s;
+            obj.e2_n = e2_n;
+
+            obj.e_scalar_w = e_scalar_w;
+            obj.e_scalar_e = e_scalar_e;
+            obj.e_scalar_s = e_scalar_s;
+            obj.e_scalar_n = e_scalar_n;
+
+            % First component of traction
+            obj.tau1_w = tau_l{1}{1};
+            obj.tau1_e = tau_r{1}{1};
+            obj.tau1_s = tau_l{2}{1};
+            obj.tau1_n = tau_r{2}{1};
+
+            % Second component of traction
+            obj.tau2_w = tau_l{1}{2};
+            obj.tau2_e = tau_r{1}{2};
+            obj.tau2_s = tau_l{2}{2};
+            obj.tau2_n = tau_r{2}{2};
+
+            % Traction vectors
+            obj.tau_w = (e_w'*e1_w*obj.tau1_w')' + (e_w'*e2_w*obj.tau2_w')';
+            obj.tau_e = (e_e'*e1_e*obj.tau1_e')' + (e_e'*e2_e*obj.tau2_e')';
+            obj.tau_s = (e_s'*e1_s*obj.tau1_s')' + (e_s'*e2_s*obj.tau2_s')';
+            obj.tau_n = (e_n'*e1_n*obj.tau1_n')' + (e_n'*e2_n*obj.tau2_n')';
+
+            % Kroneckered norms and coefficients
+            obj.Hi_kron = kron(obj.Hi, I_dim);
+
+            % Misc.
+            obj.m = m;
+            obj.h = h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+
+        % For displacement bc:
+        % bc = {comp, 'd', dComps},
+        % where
+        % dComps = vector of components with displacement BC. Default: 1:dim.
+        % In this way, we can specify one BC at a time even though the SATs depend on all BC.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.0);
+
+            assert( iscell(bc), 'The BC type must be a 2x1 or 3x1 cell array' );
+            comp = bc{1};
+            type = bc{2};
+            if ischar(comp)
+                comp = obj.getComponent(comp, boundary);
+            end
+
+            e       = obj.getBoundaryOperatorForScalarField('e', boundary);
+            tau     = obj.getBoundaryOperator(['tau' num2str(comp)], boundary);
+            T       = obj.getBoundaryTractionOperator(boundary);
+            h11     = obj.getBorrowing(boundary);
+            H_gamma = obj.getBoundaryQuadratureForScalarField(boundary);
+            nu      = obj.getNormal(boundary);
+
+            E = obj.E;
+            Hi = obj.Hi;
+            RHOi = obj.RHOi;
+            C = obj.C;
+
+            dim = obj.dim;
+            m_tot = obj.grid.N();
+
+            % Preallocate
+            [~, col] = size(tau);
+            closure = sparse(dim*m_tot, dim*m_tot);
+            penalty = sparse(dim*m_tot, col);
+
+            j = comp;
+            switch type
+
+            % Dirichlet boundary condition
+            case {'D','d','dirichlet','Dirichlet','displacement','Displacement'}
+
+                if numel(bc) >= 3
+                    dComps = bc{3};
+                else
+                    dComps = 1:dim;
+                end
+
+                % Loops over components that Dirichlet penalties end up on
+                % Y: symmetrizing part of penalty
+                % Z: symmetric part of penalty
+                % X = Y + Z.
+
+                % Nonsymmetric part goes on all components to
+                % yield traction in discrete energy rate
+                for i = 1:dim
+                    Y = T{j,i}';
+                    X = e*Y;
+                    closure = closure + E{i}*RHOi*Hi*X'*e*H_gamma*(e'*E{j}' );
+                    penalty = penalty - E{i}*RHOi*Hi*X'*e*H_gamma;
+                end
+
+                % Symmetric part only required on components with displacement BC.
+                % (Otherwise it's not symmetric.)
+                for i = dComps
+                    Z = sparse(m_tot, m_tot);
+                    for l = 1:dim
+                        for k = 1:dim
+                            Z = Z + nu(l)*C{l,i,k,j}*nu(k);
+                        end
+                    end
+                    Z = -tuning*dim/h11*Z;
+                    X = Z;
+                    closure = closure + E{i}*RHOi*Hi*X'*e*H_gamma*(e'*E{j}' );
+                    penalty = penalty - E{i}*RHOi*Hi*X'*e*H_gamma;
+                end
+
+            % Free boundary condition
+            case {'F','f','Free','free','traction','Traction','t','T'}
+                    closure = closure - E{j}*RHOi*Hi*e*H_gamma*tau';
+                    penalty = penalty + E{j}*RHOi*Hi*e*H_gamma;
+
+            % Unknown boundary condition
+            otherwise
+                error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.0
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            switch type.interpolation
+            case {'none', ''}
+                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            case {'op','OP'}
+                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            otherwise
+                error('Unknown type of interpolation: %s ', type.interpolation);
+            end
+        end
+
+        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+
+            u = obj;
+            v = neighbour_scheme;
+
+            % Operators, u side
+            e_u       = u.getBoundaryOperatorForScalarField('e', boundary);
+            tau_u     = u.getBoundaryOperator('tau', boundary);
+            h11_u     = u.getBorrowing(boundary);
+            nu_u      = u.getNormal(boundary);
+
+            E_u = u.E;
+            C_u = u.C;
+            m_tot_u = u.grid.N();
+
+            % Operators, v side
+            e_v       = v.getBoundaryOperatorForScalarField('e', neighbour_boundary);
+            tau_v     = v.getBoundaryOperator('tau', neighbour_boundary);
+            h11_v     = v.getBorrowing(neighbour_boundary);
+            nu_v      = v.getNormal(neighbour_boundary);
+
+            E_v = v.E;
+            C_v = v.C;
+            m_tot_v = v.grid.N();
+
+            % Operators that are only required for own domain
+            Hi      = u.Hi_kron;
+            RHOi    = u.RHOi_kron;
+            e_kron  = u.getBoundaryOperator('e', boundary);
+            T_u     = u.getBoundaryTractionOperator(boundary);
+
+            % Shared operators
+            H_gamma         = u.getBoundaryQuadratureForScalarField(boundary);
+            H_gamma_kron    = u.getBoundaryQuadrature(boundary);
+            dim             = u.dim;
+
+            % Preallocate
+            [~, m_int] = size(H_gamma);
+            closure = sparse(dim*m_tot_u, dim*m_tot_u);
+            penalty = sparse(dim*m_tot_u, dim*m_tot_v);
+
+            % ---- Continuity of displacement ------
+
+            % Y: symmetrizing part of penalty
+            % Z: symmetric part of penalty
+            % X = Y + Z.
+
+            % Loop over components to couple across interface
+            for j = 1:dim
+
+                % Loop over components that penalties end up on
+                for i = 1:dim
+                    Y = 1/2*T_u{j,i}';
+                    Z_u = sparse(m_int, m_int);
+                    Z_v = sparse(m_int, m_int);
+                    for l = 1:dim
+                        for k = 1:dim
+                            Z_u = Z_u + e_u'*nu_u(l)*C_u{l,i,k,j}*nu_u(k)*e_u;
+                            Z_v = Z_v + e_v'*nu_v(l)*C_v{l,i,k,j}*nu_v(k)*e_v;
+                        end
+                    end
+                    Z = -tuning*dim*( 1/(4*h11_u)*Z_u + 1/(4*h11_v)*Z_v );
+                    X = Y + Z*e_u';
+                    closure = closure + E_u{i}*X'*H_gamma*e_u'*E_u{j}';
+                    penalty = penalty - E_u{i}*X'*H_gamma*e_v'*E_v{j}';
+                end
+            end
+
+            % ---- Continuity of traction ------
+            closure = closure - 1/2*e_kron*H_gamma_kron*tau_u';
+            penalty = penalty - 1/2*e_kron*H_gamma_kron*tau_v';
+
+            % ---- Multiply by inverse of density x quadraure ----
+            closure = RHOi*Hi*closure;
+            penalty = RHOi*Hi*penalty;
+
+        end
+
+        function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            error('Non-conforming interfaces not implemented yet.');
+        end
+
+        % Returns the component number that is the tangential/normal component
+        % at the specified boundary
+        function comp = getComponent(obj, comp_str, boundary)
+            assertIsMember(comp_str, {'normal', 'tangential'});
+            assertIsMember(boundary, {'w', 'e', 's', 'n'});
+
+            switch boundary
+            case {'w', 'e'}
+                switch comp_str
+                case 'normal'
+                    comp = 1;
+                case 'tangential'
+                    comp = 2;
+                end
+            case {'s', 'n'}
+                switch comp_str
+                case 'normal'
+                    comp = 2;
+                case 'tangential'
+                    comp = 1;
+                end
+            end
+        end
+
+        % Returns h11 for the boundary specified by the string boundary.
+        % op -- string
+        function h11 = getBorrowing(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case {'w','e'}
+                h11 = obj.h11{1};
+            case {'s', 'n'}
+                h11 = obj.h11{2};
+            end
+        end
+
+        % Returns the outward unit normal vector for the boundary specified by the string boundary.
+        function nu = getNormal(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+            case 'w'
+                nu = [-1,0];
+            case 'e'
+                nu = [1,0];
+            case 's'
+                nu = [0,-1];
+            case 'n'
+                nu = [0,1];
+            end
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'})
+
+            switch op
+                case {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'}
+                    o = obj.([op, '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e'})
+
+            switch op
+
+                case 'e'
+                    o = obj.(['e_scalar', '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary unknowns
+        %
+        % boundary -- string
+        function H = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
+            I_dim = speye(obj.dim, obj.dim);
+            H = kron(H, I_dim);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Gradient.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,113 @@
+classdef Gradient < scheme.Scheme
+
+% Approximates the divergence
+% Interface and boundary condition methods are just dummies
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        D
+        D1
+        H
+    end
+
+    methods
+
+        function obj = Gradient(g, order, opSet)
+            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
+
+            dim = 2;
+
+            m = g.size();
+            m_tot = g.N();
+
+            h = g.scaling();
+            lim = g.lim;
+            if isempty(lim)
+                x = g.x;
+                lim = cell(length(x),1);
+                for i = 1:length(x)
+                    lim{i} = {min(x{i}), max(x{i})};
+                end
+            end
+
+            % 1D operators
+            ops = cell(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), lim{i}, order);
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+            end
+
+            %====== Assemble full operators ========
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            I_dim = speye(dim, dim);
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye(m_tot,m_tot);
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(I,e);
+            end
+
+            Grad = sparse(dim*m_tot, m_tot);
+            for i = 1:dim
+                Grad = Grad + E{i}*obj.D1{i};
+            end
+            obj.D = Grad;
+            obj.H = [];
+            %=========================================%'
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc)
+            error('Not implemented')
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.2
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            [m, n] = size(obj.D);
+            closure = sparse(m, n);
+
+            [m, n] = size(neighbour_scheme.D);
+            penalty = sparse(m, n);
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/LaplaceCurvilinearNew.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,605 @@
+classdef LaplaceCurvilinearNew < scheme.Scheme
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+        dim % Number of spatial dimensions
+
+        grid
+
+        order % Order of accuracy for the approximation
+
+        a,b % Parameters of the operator
+        weight % Parameter in front of time derivative (e.g. u_tt in wave equation) here: 1/a.
+
+
+        % Inner products and operators for physical coordinates
+        D % Laplace operator
+        H, Hi % Inner product
+        e_w, e_e, e_s, e_n
+        d_w, d_e, d_s, d_n % Normal derivatives at the boundary
+        H_w, H_e, H_s, H_n % Boundary inner products
+        Dx, Dy % Physical derivatives
+        M % Gradient inner product
+
+        % Metric coefficients
+        J, Ji
+        a11, a12, a22
+        K
+        x_u
+        x_v
+        y_u
+        y_v
+        s_w, s_e, s_s, s_n % Boundary integral scale factors
+
+        % Inner product and operators for logical coordinates
+        H_u, H_v % Norms in the x and y directions
+        Hi_u, Hi_v
+        Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
+        Hiu, Hiv
+        du_w, dv_w
+        du_e, dv_e
+        du_s, dv_s
+        du_n, dv_n
+
+        % Borrowing constants
+        theta_M_u, theta_M_v
+        theta_R_u, theta_R_v
+        theta_H_u, theta_H_v
+
+        % Temporary, only used for nonconforming interfaces but should be removed.
+        lambda
+    end
+
+    methods
+        % Implements  a*div(b*grad(u)) as a SBP scheme
+        % TODO: Implement proper H, it should be the real physical quadrature, the logic quadrature may be but in a separate variable (H_logic?)
+
+        function obj = LaplaceCurvilinearNew(g, order, a, b, opSet)
+            default_arg('opSet',@sbp.D2Variable);
+            default_arg('a', 1);
+            default_arg('b', @(x,y) 0*x + 1);
+
+            % assert(isa(g, 'grid.Curvilinear'))
+            if isa(a, 'function_handle')
+                a = grid.evalOn(g, a);
+            end
+
+            % If a is scalar
+            if length(a) == 1
+                a = a*ones(g.N(), 1);
+            end
+            a = spdiag(a);
+
+            if isa(b, 'function_handle')
+                b = grid.evalOn(g, b);
+            end
+
+            % If b is scalar
+            if length(b) == 1
+                % b = b*speye(g.N(), g.N());
+                b = b*ones(g.N(), 1);
+            end
+            b = spdiag(b);
+
+            dim = 2;
+            m = g.size();
+            m_u = m(1);
+            m_v = m(2);
+            m_tot = g.N();
+
+            % 1D operators
+            ops_u = opSet(m_u, {0, 1}, order);
+            ops_v = opSet(m_v, {0, 1}, order);
+
+            h_u = ops_u.h;
+            h_v = ops_v.h;
+
+            I_u = speye(m_u);
+            I_v = speye(m_v);
+
+            D1_u = ops_u.D1;
+            D2_u = ops_u.D2;
+            H_u =  ops_u.H;
+            Hi_u = ops_u.HI;
+            e_l_u = ops_u.e_l;
+            e_r_u = ops_u.e_r;
+            d1_l_u = ops_u.d1_l;
+            d1_r_u = ops_u.d1_r;
+
+            D1_v = ops_v.D1;
+            D2_v = ops_v.D2;
+            H_v =  ops_v.H;
+            Hi_v = ops_v.HI;
+            e_l_v = ops_v.e_l;
+            e_r_v = ops_v.e_r;
+            d1_l_v = ops_v.d1_l;
+            d1_r_v = ops_v.d1_r;
+
+
+            % Logical operators
+            Du = kr(D1_u,I_v);
+            Dv = kr(I_u,D1_v);
+            obj.Hu  = kr(H_u,I_v);
+            obj.Hv  = kr(I_u,H_v);
+            obj.Hiu = kr(Hi_u,I_v);
+            obj.Hiv = kr(I_u,Hi_v);
+
+            e_w  = kr(e_l_u,I_v);
+            e_e  = kr(e_r_u,I_v);
+            e_s  = kr(I_u,e_l_v);
+            e_n  = kr(I_u,e_r_v);
+            obj.du_w = kr(d1_l_u,I_v);
+            obj.dv_w = (e_w'*Dv)';
+            obj.du_e = kr(d1_r_u,I_v);
+            obj.dv_e = (e_e'*Dv)';
+            obj.du_s = (e_s'*Du)';
+            obj.dv_s = kr(I_u,d1_l_v);
+            obj.du_n = (e_n'*Du)';
+            obj.dv_n = kr(I_u,d1_r_v);
+
+
+            % Metric coefficients
+            coords = g.points();
+            x = coords(:,1);
+            y = coords(:,2);
+
+            x_u = Du*x;
+            x_v = Dv*x;
+            y_u = Du*y;
+            y_v = Dv*y;
+
+            J = x_u.*y_v - x_v.*y_u;
+            a11 =  1./J .* (x_v.^2  + y_v.^2);
+            a12 = -1./J .* (x_u.*x_v + y_u.*y_v);
+            a22 =  1./J .* (x_u.^2  + y_u.^2);
+            lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2));
+
+            K = cell(dim, dim);
+            K{1,1} = spdiag(y_v./J);
+            K{1,2} = spdiag(-y_u./J);
+            K{2,1} = spdiag(-x_v./J);
+            K{2,2} = spdiag(x_u./J);
+            obj.K = K;
+
+            obj.x_u = x_u;
+            obj.x_v = x_v;
+            obj.y_u = y_u;
+            obj.y_v = y_v;
+
+            % Assemble full operators
+            L_12 = spdiag(a12);
+            Duv = Du*b*L_12*Dv;
+            Dvu = Dv*b*L_12*Du;
+
+            Duu = sparse(m_tot);
+            Dvv = sparse(m_tot);
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            for i = 1:m_v
+                b_a11 = b*a11;
+                D = D2_u(b_a11(ind(:,i)));
+                p = ind(:,i);
+                Duu(p,p) = D;
+            end
+
+            for i = 1:m_u
+                b_a22 = b*a22;
+                D = D2_v(b_a22(ind(i,:)));
+                p = ind(i,:);
+                Dvv(p,p) = D;
+            end
+
+
+            % Physical operators
+            obj.J = spdiag(J);
+            obj.Ji = spdiag(1./J);
+
+            obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv);
+            obj.H = obj.J*kr(H_u,H_v);
+            obj.Hi = obj.Ji*kr(Hi_u,Hi_v);
+
+            obj.e_w = e_w;
+            obj.e_e = e_e;
+            obj.e_s = e_s;
+            obj.e_n = e_n;
+
+            %% normal derivatives
+            I_w = ind(1,:);
+            I_e = ind(end,:);
+            I_s = ind(:,1);
+            I_n = ind(:,end);
+
+            a11_w = spdiag(a11(I_w));
+            a12_w = spdiag(a12(I_w));
+            a11_e = spdiag(a11(I_e));
+            a12_e = spdiag(a12(I_e));
+            a22_s = spdiag(a22(I_s));
+            a12_s = spdiag(a12(I_s));
+            a22_n = spdiag(a22(I_n));
+            a12_n = spdiag(a12(I_n));
+
+            s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2);
+            s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2);
+            s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2);
+            s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2);
+
+            obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))';
+            obj.d_e =    (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))';
+            obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))';
+            obj.d_n =    (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))';
+
+            obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv;
+            obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv;
+
+            %% Boundary inner products
+            obj.H_w = H_v*spdiag(s_w);
+            obj.H_e = H_v*spdiag(s_e);
+            obj.H_s = H_u*spdiag(s_s);
+            obj.H_n = H_u*spdiag(s_n);
+
+            % Misc.
+            obj.m = m;
+            obj.h = [h_u h_v];
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+            obj.a = a;
+            obj.weight = inv(a);
+            obj.b = b;
+            obj.a11 = a11;
+            obj.a12 = a12;
+            obj.a22 = a22;
+            obj.s_w = spdiag(s_w);
+            obj.s_e = spdiag(s_e);
+            obj.s_s = spdiag(s_s);
+            obj.s_n = spdiag(s_n);
+
+            obj.theta_M_u = h_u*ops_u.borrowing.M.d1;
+            obj.theta_M_v = h_v*ops_v.borrowing.M.d1;
+
+            obj.theta_R_u = h_u*ops_u.borrowing.R.delta_D;
+            obj.theta_R_v = h_v*ops_v.borrowing.R.delta_D;
+
+            obj.theta_H_u = h_u*ops_u.borrowing.H11;
+            obj.theta_H_v = h_v*ops_v.borrowing.H11;
+
+            % Temporary
+            obj.lambda = lambda;
+        end
+
+
+        % Closure functions return the opertors applied to the own doamin to close the boundary
+        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, type, parameter)
+            default_arg('type','neumann');
+            default_arg('parameter', []);
+
+            e               = obj.getBoundaryOperator('e', boundary);
+            d               = obj.getBoundaryOperator('d', boundary);
+            H_b             = obj.getBoundaryQuadrature(boundary);
+            s_b             = obj.getBoundaryScaling(boundary);
+            [th_H, ~, th_R] = obj.getBoundaryBorrowing(boundary);
+            m               = obj.getBoundaryNumber(boundary);
+
+            K = obj.K;
+            J = obj.J;
+            Hi = obj.Hi;
+            a = obj.a;
+            b_b = e'*obj.b*e;
+
+            switch type
+                % Dirichlet boundary condition
+                case {'D','d','dirichlet'}
+                    tuning = 1.0;
+
+                    sigma = 0*b_b;
+                    for i = 1:obj.dim
+                        sigma = sigma + e'*J*K{i,m}*K{i,m}*e;
+                    end
+                    sigma = sigma/s_b;
+                    tau = tuning*(1/th_R + obj.dim/th_H)*sigma;
+
+                    closure = a*Hi*d*b_b*H_b*e' ...
+                             -a*Hi*e*tau*b_b*H_b*e';
+
+                    penalty = -a*Hi*d*b_b*H_b ...
+                              +a*Hi*e*tau*b_b*H_b;
+
+
+                % Neumann boundary condition. Note that the penalty is for du/dn and not b*du/dn.
+                case {'N','n','neumann'}
+                    tau1 = -1;
+                    tau2 = 0;
+                    tau = (tau1*e + tau2*d)*H_b;
+
+                    closure =  a*Hi*tau*b_b*d';
+                    penalty = -a*Hi*tau*b_b;
+
+
+                % Unknown, boundary condition
+                otherwise
+                    error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.2
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.coupling = 'sat';
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            switch type.coupling
+            case {'cg', 'CG'}
+                [closure, penalty] = interfaceCG(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            case {'sat', 'SAT'}
+                switch type.interpolation
+                case {'none', ''}
+                    [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+                case {'op','OP'}
+                    [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+                otherwise
+                    error('Unknown type of interpolation: %s ', type.interpolation);
+                end
+            otherwise
+                error('Unknown type of coupling: %s ', type.coupling);
+            end
+        end
+
+        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            dim = obj.dim;
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            u = obj;
+            v = neighbour_scheme;
+
+            % Boundary operators, u
+            e_u     = u.getBoundaryOperator('e', boundary);
+            d_u     = u.getBoundaryOperator('d', boundary);
+            s_b_u   = u.getBoundaryScaling(boundary);
+            [th_H_u, ~, th_R_u] = u.getBoundaryBorrowing(boundary);
+            m_u = u.getBoundaryNumber(boundary);
+
+            % Coefficients, u
+            K_u = u.K;
+            J_u = u.J;
+            b_b_u = e_u'*u.b*e_u;
+
+            % Boundary operators, v
+            e_v     = v.getBoundaryOperator('e', neighbour_boundary);
+            d_v     = v.getBoundaryOperator('d', neighbour_boundary);
+            s_b_v   = v.getBoundaryScaling(neighbour_boundary);
+            [th_H_v, ~, th_R_v] = v.getBoundaryBorrowing(neighbour_boundary);
+            m_v = v.getBoundaryNumber(neighbour_boundary);
+
+            % BUGFIX?!?!?
+            if (strcmp(boundary,'s') && strcmp(neighbour_boundary,'e')) || (strcmp(boundary,'e') && strcmp(neighbour_boundary,'s'))
+                e_v = fliplr(e_v);
+                d_v = fliplr(d_v);
+                s_b_v = rot90(s_b_v,2);
+            end
+
+            % Coefficients, v
+            K_v = v.K;
+            J_v = v.J;
+            b_b_v = e_v'*v.b*e_v;
+
+            %--- Penalty strength tau -------------
+            sigma_u = 0*b_b_u;
+            sigma_v = 0*b_b_v;
+            for i = 1:obj.dim
+                sigma_u = sigma_u + e_u'*J_u*K_u{i,m_u}*K_u{i,m_u}*e_u;
+                sigma_v = sigma_v + e_v'*J_v*K_v{i,m_v}*K_v{i,m_v}*e_v;
+            end
+            sigma_u = sigma_u/s_b_u;
+            sigma_v = sigma_v/s_b_v;
+
+            tau_R_u = 1/th_R_u*sigma_u;
+            tau_R_v = 1/th_R_v*sigma_v;
+
+            tau_H_u = dim*1/th_H_u*sigma_u;
+            tau_H_v = dim*1/th_H_v*sigma_v;
+
+            tau = 1/4*tuning*(b_b_u*(tau_R_u + tau_H_u) + b_b_v*(tau_R_v + tau_H_v));
+            %--------------------------------------
+
+            % Operators/coefficients that are only required from this side
+            Hi = u.Hi;
+            H_b = u.getBoundaryQuadrature(boundary);
+            a = u.a;
+
+            closure = 1/2*a*Hi*d_u*b_b_u*H_b*e_u' ...
+                     -1/2*a*Hi*e_u*H_b*b_b_u*d_u' ...
+                         -a*Hi*e_u*tau*H_b*e_u';
+
+            penalty = -1/2*a*Hi*d_u*b_b_u*H_b*e_v' ...
+                      -1/2*a*Hi*e_u*H_b*b_b_v*d_v' ...
+                          +a*Hi*e_u*tau*H_b*e_v';
+        end
+
+        function [closure, penalty] = interfaceCG(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            % There is no penalty, only a closure. And the closure is the same as for Neumann BC
+            e               = obj.getBoundaryOperator('e', boundary);
+            d               = obj.getBoundaryOperator('d', boundary);
+            H_b             = obj.getBoundaryQuadrature(boundary);
+
+            e_v             = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary);
+
+            Hi = obj.Hi;
+            a = obj.a;
+            b_b = e'*obj.b*e;
+
+            tau1 = -1;
+            tau2 = 0;
+            tau = (tau1*e + tau2*d)*H_b;
+
+            closure =  a*Hi*tau*b_b*d';
+
+            % Zero penalty of correct dimensions
+            penalty = 0*e*e_v';
+        end
+
+        function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            % TODO: Make this work for curvilinear grids
+            warning('LaplaceCurvilinear: Non-conforming grid interpolation only works for Cartesian grids.');
+            warning('LaplaceCurvilinear: Non-conforming interface uses Virtas penalty strength');
+            warning('LaplaceCurvilinear: Non-conforming interface assumes that b is constant');
+
+            % User can request special interpolation operators by specifying type.interpOpSet
+            default_field(type, 'interpOpSet', @sbp.InterpOpsOP);
+            interpOpSet = type.interpOpSet;
+            tuning = type.tuning;
+
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            e_u         = obj.getBoundaryOperator('e', boundary);
+            d_u         = obj.getBoundaryOperator('d', boundary);
+            H_b_u       = obj.getBoundaryQuadrature(boundary);
+            I_u         = obj.getBoundaryIndices(boundary);
+            [~, gamm_u] = obj.getBoundaryBorrowing(boundary);
+
+            e_v         = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary);
+            d_v         = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary);
+            H_b_v       = neighbour_scheme.getBoundaryQuadrature(neighbour_boundary);
+            I_v         = neighbour_scheme.getBoundaryIndices(neighbour_boundary);
+            [~, gamm_v] = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary);
+
+
+            % Find the number of grid points along the interface
+            m_u = size(e_u, 2);
+            m_v = size(e_v, 2);
+
+            Hi = obj.Hi;
+            a = obj.a;
+
+            u = obj;
+            v = neighbour_scheme;
+
+            b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2;
+            b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2;
+            b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2;
+            b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2;
+
+            tau_u = -1./(4*b1_u) -1./(4*b2_u);
+            tau_v = -1./(4*b1_v) -1./(4*b2_v);
+
+            tau_u = tuning * spdiag(tau_u);
+            tau_v = tuning * spdiag(tau_v);
+            beta_u = tau_v;
+
+            % Build interpolation operators
+            intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order);
+            Iu2v = intOps.Iu2v;
+            Iv2u = intOps.Iv2u;
+
+            closure = a*Hi*e_u*tau_u*H_b_u*e_u' + ...
+                      a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*Iu2v.good*e_u' + ...
+                      a*1/2*Hi*d_u*H_b_u*e_u' + ...
+                      -a*1/2*Hi*e_u*H_b_u*d_u';
+
+            penalty = -a*Hi*e_u*tau_u*H_b_u*Iv2u.good*e_v' + ...
+                      -a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*e_v' + ...
+                      -a*1/2*Hi*d_u*H_b_u*Iv2u.good*e_v' + ...
+                      -a*1/2*Hi*e_u*H_b_u*Iv2u.bad*d_v';
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op        -- string
+        % boundary  -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(op, {'e', 'd'})
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            o = obj.([op, '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        % Returns square boundary quadrature scaling matrix, of dimension
+        % corresponding to the number of boundary points
+        %
+        % boundary -- string
+        function s_b = getBoundaryScaling(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            s_b = obj.(['s_', boundary]);
+        end
+
+        % Returns the coordinate number corresponding to the boundary
+        %
+        % boundary -- string
+        function m = getBoundaryNumber(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+                case {'w', 'e'}
+                    m = 1;
+                case {'s', 'n'}
+                    m = 2;
+            end
+        end
+
+        % Returns the indices of the boundary points in the grid matrix
+        % boundary -- string
+        function I = getBoundaryIndices(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m));
+            switch boundary
+                case 'w'
+                    I = ind(1,:);
+                case 'e'
+                    I = ind(end,:);
+                case 's'
+                    I = ind(:,1)';
+                case 'n'
+                    I = ind(:,end)';
+            end
+        end
+
+        % Returns borrowing constant gamma
+        % boundary -- string
+        function [theta_H, theta_M, theta_R] = getBoundaryBorrowing(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+                case {'w','e'}
+                    theta_H = obj.theta_H_u;
+                    theta_M = obj.theta_M_u;
+                    theta_R = obj.theta_R_u;
+                case {'s','n'}
+                    theta_H = obj.theta_H_v;
+                    theta_M = obj.theta_M_v;
+                    theta_R = obj.theta_R_v;
+            end
+        end
+
+        function N = size(obj)
+            N = prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/LaplaceCurvilinearNewCorner.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,591 @@
+classdef LaplaceCurvilinearNewCorner < scheme.Scheme
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+        dim % Number of spatial dimensions
+
+        grid
+
+        order % Order of accuracy for the approximation
+
+        a,b % Parameters of the operator
+
+
+        % Inner products and operators for physical coordinates
+        D % Laplace operator
+        H, Hi % Inner product
+        e_w, e_e, e_s, e_n
+        d_w, d_e, d_s, d_n % Normal derivatives at the boundary
+        H_w, H_e, H_s, H_n % Boundary inner products
+        Dx, Dy % Physical derivatives
+        M % Gradient inner product
+
+        % Metric coefficients
+        J, Ji
+        a11, a12, a22
+        K
+        x_u
+        x_v
+        y_u
+        y_v
+        s_w, s_e, s_s, s_n % Boundary integral scale factors
+
+        % Inner product and operators for logical coordinates
+        H_u, H_v, H_1D % Norms in the x and y directions
+        Hi_u, Hi_v
+        Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
+        Hiu, Hiv
+        du_w, dv_w
+        du_e, dv_e
+        du_s, dv_s
+        du_n, dv_n
+
+        % Borrowing constants
+        theta_M_u, theta_M_v
+        theta_R_u, theta_R_v
+        theta_H_u, theta_H_v
+
+        % Temporary
+        lambda
+        gamm_u, gamm_v
+
+    end
+
+    methods
+        % Implements  a*div(b*grad(u)) as a SBP scheme
+        % TODO: Implement proper H, it should be the real physical quadrature, the logic quadrature may be but in a separate variable (H_logic?)
+
+        function obj = LaplaceCurvilinearNewCorner(g, order, a, b, opSet)
+            default_arg('opSet',@sbp.D2Variable);
+            default_arg('a', 1);
+            default_arg('b', @(x,y) 0*x + 1);
+
+            % assert(isa(g, 'grid.Curvilinear'))
+            if isa(a, 'function_handle')
+                a = grid.evalOn(g, a);
+            end
+            a = spdiag(a);
+
+            if isa(b, 'function_handle')
+                b = grid.evalOn(g, b);
+            end
+            b = spdiag(b);
+
+            % If b is scalar
+            if length(b) == 1
+                b = b*speye(g.N(), g.N());
+            end
+
+            dim = 2;
+            m = g.size();
+            m_u = m(1);
+            m_v = m(2);
+            m_tot = g.N();
+
+            if isa(g, 'grid.Curvilinear')
+                h = g.scaling();
+                h_u = h(1);
+                h_v = h(2);
+            else
+                h_u = 1/(m_u - 1);
+                h_v = 1/(m_v - 1);
+                h = [h_u, h_v];
+            end
+
+            % 1D operators
+            ops_u = opSet(m_u, {0, 1}, order);
+            ops_v = opSet(m_v, {0, 1}, order);
+
+            I_u = speye(m_u);
+            I_v = speye(m_v);
+
+            D1_u = ops_u.D1;
+            D2_u = ops_u.D2;
+            H_u =  ops_u.H;
+            Hi_u = ops_u.HI;
+            e_l_u = ops_u.e_l;
+            e_r_u = ops_u.e_r;
+            d1_l_u = ops_u.d1_l;
+            d1_r_u = ops_u.d1_r;
+
+            D1_v = ops_v.D1;
+            D2_v = ops_v.D2;
+            H_v =  ops_v.H;
+            Hi_v = ops_v.HI;
+            e_l_v = ops_v.e_l;
+            e_r_v = ops_v.e_r;
+            d1_l_v = ops_v.d1_l;
+            d1_r_v = ops_v.d1_r;
+
+
+            % Logical operators
+            Du = kr(D1_u,I_v);
+            Dv = kr(I_u,D1_v);
+            obj.H_u = H_u;
+            obj.H_v = H_v;
+            obj.H_1D = {H_u, H_v};
+
+            obj.Hu  = kr(H_u,I_v);
+            obj.Hv  = kr(I_u,H_v);
+            obj.Hiu = kr(Hi_u,I_v);
+            obj.Hiv = kr(I_u,Hi_v);
+
+            e_w  = kr(e_l_u,I_v);
+            e_e  = kr(e_r_u,I_v);
+            e_s  = kr(I_u,e_l_v);
+            e_n  = kr(I_u,e_r_v);
+            obj.du_w = kr(d1_l_u,I_v);
+            obj.dv_w = (e_w'*Dv)';
+            obj.du_e = kr(d1_r_u,I_v);
+            obj.dv_e = (e_e'*Dv)';
+            obj.du_s = (e_s'*Du)';
+            obj.dv_s = kr(I_u,d1_l_v);
+            obj.du_n = (e_n'*Du)';
+            obj.dv_n = kr(I_u,d1_r_v);
+
+
+            % Metric coefficients
+            coords = g.points();
+            x = coords(:,1);
+            y = coords(:,2);
+
+            x_u = Du*x;
+            x_v = Dv*x;
+            y_u = Du*y;
+            y_v = Dv*y;
+
+            J = x_u.*y_v - x_v.*y_u;
+            a11 =  1./J .* (x_v.^2  + y_v.^2);
+            a12 = -1./J .* (x_u.*x_v + y_u.*y_v);
+            a22 =  1./J .* (x_u.^2  + y_u.^2);
+            lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2));
+
+            K = cell(dim, dim);
+            K{1,1} = spdiag(y_v./J);
+            K{1,2} = spdiag(-y_u./J);
+            K{2,1} = spdiag(-x_v./J);
+            K{2,2} = spdiag(x_u./J);
+            obj.K = K;
+
+            obj.x_u = x_u;
+            obj.x_v = x_v;
+            obj.y_u = y_u;
+            obj.y_v = y_v;
+
+            % Assemble full operators
+            L_12 = spdiag(a12);
+            Duv = Du*b*L_12*Dv;
+            Dvu = Dv*b*L_12*Du;
+
+            Duu = sparse(m_tot);
+            Dvv = sparse(m_tot);
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            for i = 1:m_v
+                b_a11 = b*a11;
+                D = D2_u(b_a11(ind(:,i)));
+                p = ind(:,i);
+                Duu(p,p) = D;
+            end
+
+            for i = 1:m_u
+                b_a22 = b*a22;
+                D = D2_v(b_a22(ind(i,:)));
+                p = ind(i,:);
+                Dvv(p,p) = D;
+            end
+
+
+            % Physical operators
+            obj.J = spdiag(J);
+            obj.Ji = spdiag(1./J);
+
+            obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv);
+            obj.H = obj.J*kr(H_u,H_v);
+            obj.Hi = obj.Ji*kr(Hi_u,Hi_v);
+
+            obj.e_w = e_w;
+            obj.e_e = e_e;
+            obj.e_s = e_s;
+            obj.e_n = e_n;
+
+            %% normal derivatives
+            I_w = ind(1,:);
+            I_e = ind(end,:);
+            I_s = ind(:,1);
+            I_n = ind(:,end);
+
+            a11_w = spdiag(a11(I_w));
+            a12_w = spdiag(a12(I_w));
+            a11_e = spdiag(a11(I_e));
+            a12_e = spdiag(a12(I_e));
+            a22_s = spdiag(a22(I_s));
+            a12_s = spdiag(a12(I_s));
+            a22_n = spdiag(a22(I_n));
+            a12_n = spdiag(a12(I_n));
+
+            s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2);
+            s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2);
+            s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2);
+            s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2);
+
+            obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))';
+            obj.d_e =    (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))';
+            obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))';
+            obj.d_n =    (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))';
+
+            obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv;
+            obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv;
+
+            %% Boundary inner products
+            obj.H_w = H_v*spdiag(s_w);
+            obj.H_e = H_v*spdiag(s_e);
+            obj.H_s = H_u*spdiag(s_s);
+            obj.H_n = H_u*spdiag(s_n);
+
+            % Misc.
+            obj.m = m;
+            obj.h = [h_u h_v];
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+            obj.a = a;
+            obj.b = b;
+            obj.a11 = a11;
+            obj.a12 = a12;
+            obj.a22 = a22;
+            obj.s_w = spdiag(s_w);
+            obj.s_e = spdiag(s_e);
+            obj.s_s = spdiag(s_s);
+            obj.s_n = spdiag(s_n);
+
+            obj.theta_M_u = h_u*ops_u.borrowing.M.d1;
+            obj.theta_M_v = h_v*ops_v.borrowing.M.d1;
+
+            obj.theta_R_u = h_u*ops_u.borrowing.R.delta_D;
+            obj.theta_R_v = h_v*ops_v.borrowing.R.delta_D;
+
+            obj.theta_H_u = h_u*ops_u.borrowing.H11;
+            obj.theta_H_v = h_v*ops_v.borrowing.H11;
+
+            % Temporary
+            obj.lambda = lambda;
+            obj.gamm_u = h_u*ops_u.borrowing.M.d1;
+            obj.gamm_v = h_v*ops_v.borrowing.M.d1;
+        end
+
+
+        % Closure functions return the opertors applied to the own doamin to close the boundary
+        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, type, parameter)
+            default_arg('type','neumann');
+            default_arg('parameter', []);
+
+            e = obj.getBoundaryOperator('e', boundary);
+            d = obj.getBoundaryOperator('d', boundary);
+            H_b = obj.getBoundaryQuadrature(boundary);
+            s_b = obj.getBoundaryScaling(boundary);
+            [th_H, ~, th_R] = obj.getBoundaryBorrowing(boundary);
+            m = obj.getBoundaryNumber(boundary);
+
+            K = obj.K;
+            J = obj.J;
+            Hi = obj.Hi;
+            a = obj.a;
+            b_b = e'*obj.b*e;
+
+            switch type
+                % Dirichlet boundary condition
+                case {'D','d','dirichlet'}
+                    tuning = 1.0;
+
+                    sigma = 0*b_b;
+                    for i = 1:obj.dim
+                        sigma = sigma + e'*J*K{i,m}*K{i,m}*e;
+                    end
+                    sigma = sigma/s_b;
+                    % tau = tuning*(1/th_R + obj.dim/th_H)*sigma;
+
+                    tau_R = 1/th_R*sigma;
+
+                    tau_H = 1/th_H*sigma;
+                    tau_H(1,1) = obj.dim*tau_H(1,1);
+                    tau_H(end,end) = obj.dim*tau_H(end,end);
+
+                    tau = tuning*(tau_R + tau_H);
+
+                    closure = a*Hi*d*b_b*H_b*e' ...
+                             -a*Hi*e*tau*b_b*H_b*e';
+
+                    penalty = -a*Hi*d*b_b*H_b ...
+                              +a*Hi*e*tau*b_b*H_b;
+
+
+                % Neumann boundary condition. Note that the penalty is for du/dn and not b*du/dn.
+                case {'N','n','neumann'}
+                    tau1 = -1;
+                    tau2 = 0;
+                    tau = (tau1*e + tau2*d)*H_b;
+
+                    closure =  a*Hi*tau*b_b*d';
+                    penalty = -a*Hi*tau*b_b;
+
+
+                % Unknown boundary condition
+                otherwise
+                    error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.2
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            % error('Not implemented')
+
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            switch type.interpolation
+            case {'none', ''}
+                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            case {'op','OP'}
+                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            otherwise
+                error('Unknown type of interpolation: %s ', type.interpolation);
+            end
+        end
+
+        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            dim = obj.dim;
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            u = obj;
+            v = neighbour_scheme;
+
+            % Boundary operators, u
+            e_u = u.getBoundaryOperator('e', boundary);
+            d_u = u.getBoundaryOperator('d', boundary);
+            gamm_u = u.getBoundaryBorrowing(boundary);
+            s_b_u = u.getBoundaryScaling(boundary);
+            [th_H_u, ~, th_R_u] = u.getBoundaryBorrowing(boundary);
+            m_u = u.getBoundaryNumber(boundary);
+
+            % Coefficients, u
+            K_u = u.K;
+            J_u = u.J;
+            b_b_u = e_u'*u.b*e_u;
+
+            % Boundary operators, v
+            e_v = v.getBoundaryOperator('e', neighbour_boundary);
+            d_v = v.getBoundaryOperator('d', neighbour_boundary);
+            gamm_v = v.getBoundaryBorrowing(neighbour_boundary);
+            s_b_v = v.getBoundaryScaling(neighbour_boundary);
+            [th_H_v, ~, th_R_v] = v.getBoundaryBorrowing(neighbour_boundary);
+            m_v = v.getBoundaryNumber(neighbour_boundary);
+
+            % Coefficients, v
+            K_v = v.K;
+            J_v = v.J;
+            b_b_v = e_v'*v.b*e_v;
+
+            %--- Penalty strength tau -------------
+            sigma_u = 0*b_b_u;
+            sigma_v = 0*b_b_v;
+            for i = 1:obj.dim
+                sigma_u = sigma_u + e_u'*J_u*K_u{i,m_u}*K_u{i,m_u}*e_u;
+                sigma_v = sigma_v + e_v'*J_v*K_v{i,m_v}*K_v{i,m_v}*e_v;
+            end
+            sigma_u = sigma_u/s_b_u;
+            sigma_v = sigma_v/s_b_v;
+
+            tau_R_u = 1/th_R_u*sigma_u;
+            tau_R_v = 1/th_R_v*sigma_v;
+
+            tau_H_u = 1/th_H_u*sigma_u;
+            tau_H_u(1,1) = dim*tau_H_u(1,1);
+            tau_H_u(end,end) = dim*tau_H_u(end,end);
+
+            tau_H_v = 1/th_H_v*sigma_v;
+            tau_H_v(1,1) = dim*tau_H_v(1,1);
+            tau_H_v(end,end) = dim*tau_H_v(end,end);
+
+            tau = 1/4*tuning*(b_b_u*(tau_R_u + tau_H_u) + b_b_v*(tau_R_v + tau_H_v));
+            %--------------------------------------
+
+            % Operators/coefficients that are only required from this side
+            Hi = u.Hi;
+            H_b = u.getBoundaryQuadrature(boundary);
+            a = u.a;
+
+            closure = 1/2*a*Hi*d_u*b_b_u*H_b*e_u' ...
+                     -1/2*a*Hi*e_u*H_b*b_b_u*d_u' ...
+                         -a*Hi*e_u*tau*H_b*e_u';
+
+            penalty = -1/2*a*Hi*d_u*b_b_u*H_b*e_v' ...
+                      -1/2*a*Hi*e_u*H_b*b_b_v*d_v' ...
+                          +a*Hi*e_u*tau*H_b*e_v';
+        end
+
+        function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            % TODO: Make this work for curvilinear grids
+            warning('LaplaceCurvilinear: Non-conforming grid interpolation only works for Cartesian grids.');
+            warning('LaplaceCurvilinear: Non-conforming interface uses Virtas penalty strength');
+            warning('LaplaceCurvilinear: Non-conforming interface assumes that b is constant');
+
+            % User can request special interpolation operators by specifying type.interpOpSet
+            default_field(type, 'interpOpSet', @sbp.InterpOpsOP);
+            interpOpSet = type.interpOpSet;
+            tuning = type.tuning;
+
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            e_u = obj.getBoundaryOperator('e', boundary);
+            d_u = obj.getBoundaryOperator('d', boundary);
+            H_b_u = obj.getBoundaryQuadrature(boundary);
+            I_u = obj.getBoundaryIndices(boundary);
+            gamm_u = obj.getBoundaryBorrowing(boundary);
+
+            e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary);
+            d_v = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary);
+            H_b_v = neighbour_scheme.getBoundaryQuadrature(neighbour_boundary);
+            I_v = neighbour_scheme.getBoundaryIndices(neighbour_boundary);
+            gamm_v = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary);
+
+
+            % Find the number of grid points along the interface
+            m_u = size(e_u, 2);
+            m_v = size(e_v, 2);
+
+            Hi = obj.Hi;
+            a = obj.a;
+
+            u = obj;
+            v = neighbour_scheme;
+
+            b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2;
+            b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2;
+            b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2;
+            b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2;
+
+            tau_u = -1./(4*b1_u) -1./(4*b2_u);
+            tau_v = -1./(4*b1_v) -1./(4*b2_v);
+
+            tau_u = tuning * spdiag(tau_u);
+            tau_v = tuning * spdiag(tau_v);
+            beta_u = tau_v;
+
+            % Build interpolation operators
+            intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order);
+            Iu2v = intOps.Iu2v;
+            Iv2u = intOps.Iv2u;
+
+            closure = a*Hi*e_u*tau_u*H_b_u*e_u' + ...
+                      a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*Iu2v.good*e_u' + ...
+                      a*1/2*Hi*d_u*H_b_u*e_u' + ...
+                      -a*1/2*Hi*e_u*H_b_u*d_u';
+
+            penalty = -a*Hi*e_u*tau_u*H_b_u*Iv2u.good*e_v' + ...
+                      -a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*e_v' + ...
+                      -a*1/2*Hi*d_u*H_b_u*Iv2u.good*e_v' + ...
+                      -a*1/2*Hi*e_u*H_b_u*Iv2u.bad*d_v';
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op        -- string
+        % boundary  -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(op, {'e', 'd'})
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            o = obj.([op, '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        % Returns square boundary quadrature scaling matrix, of dimension
+        % corresponding to the number of boundary points
+        %
+        % boundary -- string
+        function s_b = getBoundaryScaling(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            s_b = obj.(['s_', boundary]);
+        end
+
+        % Returns the coordinate number corresponding to the boundary
+        %
+        % boundary -- string
+        function m = getBoundaryNumber(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            switch boundary
+                case {'w', 'e'}
+                    m = 1;
+                case {'s', 'n'}
+                    m = 2;
+            end
+        end
+
+        % Returns the indices of the boundary points in the grid matrix
+        % boundary -- string
+        function I = getBoundaryIndices(obj, boundary)
+            ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m));
+            switch boundary
+                case 'w'
+                    I = ind(1,:);
+                case 'e'
+                    I = ind(end,:);
+                case 's'
+                    I = ind(:,1)';
+                case 'n'
+                    I = ind(:,end)';
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+        end
+
+        % Returns borrowing constant gamma
+        % boundary -- string
+        function [theta_H, theta_M, theta_R] = getBoundaryBorrowing(obj, boundary)
+            switch boundary
+                case {'w','e'}
+                    theta_H = obj.theta_H_u;
+                    theta_M = obj.theta_M_u;
+                    theta_R = obj.theta_R_u;
+                case {'s','n'}
+                    theta_H = obj.theta_H_v;
+                    theta_M = obj.theta_M_v;
+                    theta_R = obj.theta_R_v;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+        end
+
+        function N = size(obj)
+            N = prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/ViscoElastic2d.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,733 @@
+classdef ViscoElastic2d < scheme.Scheme
+
+% Discretizes the visco-elastic wave equation in curvilinear coordinates.
+% Assumes fully compatible operators.
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for variable coefficients
+        % J, Ji
+        RHO % Density
+        C   % Elastic stiffness tensor
+        ETA % Effective viscosity, used in strain rate eq
+
+        D % Total operator
+        Delastic        % Elastic operator (momentum balance)
+        Dviscous        % Acts on viscous strains in momentum balance
+        DstrainRate     % Acts on u and gamma, returns strain rate gamma_t
+
+        D1, D1Tilde % Physical derivatives
+        sigma % Cell matrix of physical stress operators
+
+        % Inner products
+        H
+
+        % Boundary inner products (for scalar field)
+        H_w, H_e, H_s, H_n
+
+        % Restriction operators
+        Eu, Egamma  % Pick out all components of u/gamma
+        eU, eGamma  % Pick out one specific component
+
+        % Bundary restriction ops
+        e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n
+
+        n_w, n_e, n_s, n_n % Physical normals
+        tangent_w, tangent_e, tangent_s, tangent_n % Physical tangents
+
+        tau1_w, tau1_e, tau1_s, tau1_n  % Return scalar field
+        tau2_w, tau2_e, tau2_s, tau2_n  % Return scalar field
+        tau_n_w, tau_n_e, tau_n_s, tau_n_n % Return scalar field
+        tau_t_w, tau_t_e, tau_t_s, tau_t_n % Return scalar field
+
+        elasticObj
+
+    end
+
+    methods
+
+        % The coefficients can either be function handles or grid functions
+        function obj = ViscoElastic2d(g, order, rho, C, eta)
+            default_arg('rho', @(x,y) 0*x+1);
+            default_arg('eta', @(x,y) 0*x+1);
+            dim = 2;
+
+            C_default = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C_default{i,j,k,l} = @(x,y) 0*x ;
+                        end
+                    end
+                end
+            end
+            default_arg('C', C_default);
+
+            assert(isa(g, 'grid.Curvilinear'));
+
+            if isa(rho, 'function_handle')
+                rho = grid.evalOn(g, rho);
+            end
+
+            if isa(eta, 'function_handle')
+                eta = grid.evalOn(g, eta);
+            end
+
+            C_mat = cell(dim,dim,dim,dim);
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            if isa(C{i,j,k,l}, 'function_handle')
+                                C{i,j,k,l} = grid.evalOn(g, C{i,j,k,l});
+                            end
+                            C_mat{i,j,k,l} = spdiag(C{i,j,k,l});
+                        end
+                    end
+                end
+            end
+            obj.C = C_mat;
+
+            elasticObj = scheme.Elastic2dCurvilinearAnisotropic(g, order, rho, C);
+
+            % Construct a pair of first derivatives
+            K = elasticObj.K;
+            for i = 1:dim
+                for j = 1:dim
+                    K{i,j} = spdiag(K{i,j});
+                end
+            end
+            J = elasticObj.J;
+            Ji = elasticObj.Ji;
+            D_ref = elasticObj.refObj.D1;
+            D1 = cell(dim, 1);
+            D1Tilde = cell(dim, 1);
+            for i = 1:dim
+                D1{i} = 0*D_ref{i};
+                D1Tilde{i} = 0*D_ref{i};
+                for j = 1:dim
+                    D1{i} = D1{i} + K{i,j}*D_ref{j};
+                    D1Tilde{i} = D1Tilde{i} + Ji*D_ref{j}*J*K{i,j};
+                end
+            end
+            obj.D1 = D1;
+            obj.D1Tilde = D1Tilde;
+
+            eU = elasticObj.E;
+
+            % Storage order for gamma: 11-12-21-22.
+            I = speye(g.N(), g.N());
+            eGamma = cell(dim, dim);
+            e = cell(dim, dim);
+            e{1,1} = [1;0;0;0];
+            e{1,2} = [0;1;0;0];
+            e{2,1} = [0;0;1;0];
+            e{2,2} = [0;0;0;1];
+            for i = 1:dim
+                for j = 1:dim
+                    eGamma{i,j} = kron(I, e{i,j});
+                end
+            end
+
+            % Store u first, then gamma
+            mU = dim*g.N();
+            mGamma = dim^2*g.N();
+            Iu = speye(mU, mU);
+            Igamma = speye(mGamma, mGamma);
+
+            Eu = cell2mat({Iu, sparse(mU, mGamma)})';
+            Egamma = cell2mat({sparse(mGamma, mU), Igamma})';
+
+            for i = 1:dim
+                eU{i} = Eu*eU{i};
+            end
+            for i = 1:dim
+                for j = 1:dim
+                    eGamma{i,j} = Egamma*eGamma{i,j};
+                end
+            end
+
+            obj.eGamma = eGamma;
+            obj.eU = eU;
+            obj.Egamma = Egamma;
+            obj.Eu = Eu;
+
+            % Build stress operator
+            sigma = cell(dim, dim);
+            C = obj.C;
+            for i = 1:dim
+                for j = 1:dim
+                    sigma{i,j} = spalloc(g.N(), (dim^2 + dim)*g.N(), order^2*g.N());
+                    for k = 1:dim
+                        for l = 1:dim
+                            sigma{i,j} = sigma{i,j} + C{i,j,k,l}*(D1{k}*eU{l}' - eGamma{k,l}');
+                        end
+                    end
+                end
+            end
+
+            % Elastic operator
+            Delastic = Eu*elasticObj.D*Eu';
+
+            % Add viscous strains to momentum balance
+            RHOi = spdiag(1./rho);
+            Dviscous = spalloc((dim^2 + dim)*g.N(), (dim^2 + dim)*g.N(), order^2*(dim^2 + dim)*g.N());
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            Dviscous = Dviscous - eU{j}*RHOi*D1Tilde{i}*C{i,j,k,l}*eGamma{k,l}';
+                        end
+                    end
+                end
+            end
+
+            ETA = spdiag(eta);
+            DstrainRate = 0*Delastic;
+            for i = 1:dim
+                for j = 1:dim
+                    DstrainRate = DstrainRate + eGamma{i,j}*(ETA\sigma{i,j});
+                end
+            end
+
+            obj.D = Delastic + Dviscous + DstrainRate;
+            obj.Delastic = Delastic;
+            obj.Dviscous = Dviscous;
+            obj.DstrainRate = DstrainRate;
+            obj.sigma = sigma;
+
+            %---- Set remaining object properties ------
+            obj.RHO = elasticObj.RHO;
+            obj.ETA = ETA;
+            obj.H = elasticObj.H;
+
+            obj.n_w = elasticObj.n_w;
+            obj.n_e = elasticObj.n_e;
+            obj.n_s = elasticObj.n_s;
+            obj.n_n = elasticObj.n_n;
+
+            obj.tangent_w = elasticObj.tangent_w;
+            obj.tangent_e = elasticObj.tangent_e;
+            obj.tangent_s = elasticObj.tangent_s;
+            obj.tangent_n = elasticObj.tangent_n;
+
+            obj.H_w = elasticObj.H_w;
+            obj.H_e = elasticObj.H_e;
+            obj.H_s = elasticObj.H_s;
+            obj.H_n = elasticObj.H_n;
+
+            obj.e_scalar_w = elasticObj.e_scalar_w;
+            obj.e_scalar_e = elasticObj.e_scalar_e;
+            obj.e_scalar_s = elasticObj.e_scalar_s;
+            obj.e_scalar_n = elasticObj.e_scalar_n;
+
+            % -- Create new traction operators including viscous strain contribution --
+            tau1 = struct;
+            tau2 = struct;
+            tau_n = struct;
+            tau_t = struct;
+            boundaries = {'w', 'e', 's', 'n'};
+            for bNumber = 1:numel(boundaries)
+                b = boundaries{bNumber};
+
+                n = elasticObj.getNormal(b);
+                t = elasticObj.getTangent(b);
+                e = elasticObj.getBoundaryOperatorForScalarField('e', b);
+                tau1.(b) = (elasticObj.getBoundaryOperator('tau1', b)'*Eu')';
+                tau2.(b) = (elasticObj.getBoundaryOperator('tau2', b)'*Eu')';
+
+                % Add viscous contributions
+                for i = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            tau1.(b) = tau1.(b) - (n{i}*e'*C{i,1,k,l}*eGamma{k,l}')';
+                            tau2.(b) = tau2.(b) - (n{i}*e'*C{i,2,k,l}*eGamma{k,l}')';
+                        end
+                    end
+                end
+
+                % Compute normal and tangential components
+                tau_n.(b) = tau1.(b)*n{1} + tau2.(b)*n{2};
+                tau_t.(b) = tau1.(b)*t{1} + tau2.(b)*t{2};
+            end
+
+            obj.tau1_w = tau1.w;
+            obj.tau1_e = tau1.e;
+            obj.tau1_s = tau1.s;
+            obj.tau1_n = tau1.n;
+
+            obj.tau2_w = tau2.w;
+            obj.tau2_e = tau2.e;
+            obj.tau2_s = tau2.s;
+            obj.tau2_n = tau2.n;
+
+            obj.tau_n_w = tau_n.w;
+            obj.tau_n_e = tau_n.e;
+            obj.tau_n_s = tau_n.s;
+            obj.tau_n_n = tau_n.n;
+
+            obj.tau_t_w = tau_t.w;
+            obj.tau_t_e = tau_t.e;
+            obj.tau_t_s = tau_t.s;
+            obj.tau_t_n = tau_t.n;
+            %----------------------------------------
+
+            % Misc.
+            obj.elasticObj = elasticObj;
+            obj.m = elasticObj.m;
+            obj.h = elasticObj.h;
+
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       bc                  is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
+        %                           on the first component. Can also be e.g.
+        %                           {'normal', 'd'} or {'tangential', 't'} for conditions on
+        %                           tangential/normal component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+
+        % For displacement bc:
+        % bc = {comp, 'd', dComps},
+        % where
+        % dComps = vector of components with displacement BC. Default: 1:dim.
+        % In this way, we can specify one BC at a time even though the SATs depend on all BC.
+        function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
+            default_arg('tuning', 1.0);
+            assert( iscell(bc), 'The BC type must be a 2x1 or 3x1 cell array' );
+
+            component = bc{1};
+            type = bc{2};
+            dim = obj.dim;
+
+            n       = obj.getNormal(boundary);
+            H_gamma = obj.getBoundaryQuadratureForScalarField(boundary);
+            e       = obj.getBoundaryOperatorForScalarField('e', boundary);
+
+            H       = obj.H;
+            RHO     = obj.RHO;
+            ETA     = obj.ETA;
+            C       = obj.C;
+            Eu      = obj.Eu;
+            eU      = obj.eU;
+            eGamma  = obj.eGamma;
+
+            % Get elastic closure and penalty
+            [closure, penalty] = obj.elasticObj.boundary_condition(boundary, bc, tuning);
+            closure = Eu*closure*Eu';
+            penalty = Eu*penalty;
+
+            switch component
+            case 't'
+                dir = obj.getTangent(boundary);
+                tau = obj.getBoundaryOperator('tau_t', boundary);
+            case 'n'
+                dir = obj.getNormal(boundary);
+                tau = obj.getBoundaryOperator('tau_n', boundary);
+            case 1
+                dir = {1, 0};
+                tau = obj.getBoundaryOperator('tau1', boundary);
+            case 2
+                dir = {0, 1};
+                tau = obj.getBoundaryOperator('tau2', boundary);
+            end
+
+            switch type
+            case {'F','f','Free','free','traction','Traction','t','T'}
+
+                % Set elastic closure to zero
+                closure = 0*closure;
+
+                for m = 1:dim
+                    closure = closure - eU{m}*( (RHO*H)\(e*dir{m}*H_gamma*tau') );
+                end
+
+            case {'D','d','dirichlet','Dirichlet','displacement','Displacement'}
+
+                % Add penalty to strain rate eq
+                for i = 1:dim
+                    for j = 1:dim
+                        for k = 1:dim
+                            for l = 1:dim
+                                for m = 1:dim
+                                    closure = closure - eGamma{i,j}*( (H*ETA)\(C{i,j,k,l}*e*H_gamma*dir{l}*dir{m}*n{k}*e'*eU{m}') );
+                                end
+                                penalty = penalty + eGamma{i,j}*( (H*ETA)\(C{i,j,k,l}*e*H_gamma*dir{l}*n{k}) );
+                            end
+                        end
+                    end
+                end
+
+            end
+
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- tuning:           penalty strength, defaults to 1.0
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty, forcingPenalties] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.tuning = 1.0;
+            defaultType.interpolation = 'none';
+            defaultType.type = 'standard';
+            default_struct('type', defaultType);
+
+            forcingPenalties = [];
+
+            switch type.type
+            case 'standard'
+                [closure, penalty] = obj.interfaceStandard(boundary,neighbour_scheme,neighbour_boundary,type);
+            case 'frictionalFault'
+                [closure, penalty] = obj.interfaceFrictionalFault(boundary,neighbour_scheme,neighbour_boundary,type);
+            case 'normalTangential'
+                [closure, penalty, forcingPenalties] = obj.interfaceNormalTangential(boundary,neighbour_scheme,neighbour_boundary,type);
+            end
+
+        end
+
+        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            u = obj;
+            v = neighbour_scheme;
+
+            dim = obj.dim;
+
+            n       = u.getNormal(boundary);
+            H_gamma = u.getBoundaryQuadratureForScalarField(boundary);
+            e       = u.getBoundaryOperatorForScalarField('e', boundary);
+
+            ev      = v.getBoundaryOperatorForScalarField('e', neighbour_boundary);
+
+            H       = u.H;
+            RHO     = u.RHO;
+            ETA     = u.ETA;
+            C       = u.C;
+            Eu      = u.Eu;
+            eU      = u.eU;
+            eGamma  = u.eGamma;
+
+            CV       = v.C;
+            Ev      = v.Eu;
+            eV      = v.eU;
+            eGammaV = v.eGamma;
+            nV      = v.getNormal(neighbour_boundary);
+
+
+            % Get elastic closure and penalty
+            [closure, penalty] = obj.elasticObj.interface(boundary, v.elasticObj, neighbour_boundary, type);
+            closure = Eu*closure*Eu';
+            penalty = Eu*penalty*Ev';
+
+            % Add viscous part of traction coupling
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            closure = closure + 1/2*eU{j}*( (RHO*H)\(C{i,j,k,l}*e*H_gamma*n{i}*e'*eGamma{k,l}') );
+                            penalty = penalty + 1/2*eU{j}*( (RHO*H)\(e*H_gamma*nV{i}*(ev'*CV{i,j,k,l}*ev)*ev'*eGammaV{k,l}') );
+                        end
+                    end
+                end
+            end
+
+            % Add penalty to strain rate eq
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            closure = closure - 1/2*eGamma{i,j}*( (H*ETA)\(C{i,j,k,l}*e*H_gamma*n{k}*e'*eU{l}') );
+                            penalty = penalty + 1/2*eGamma{i,j}*( (H*ETA)\(C{i,j,k,l}*e*H_gamma*n{k}*ev'*eV{l}') );
+                        end
+                    end
+                end
+            end
+
+
+        end
+
+        function [closure, penalty] = interfaceFrictionalFault(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            u = obj;
+            v = neighbour_scheme;
+
+            dim = obj.dim;
+
+            n       = u.getNormal(boundary);
+            H_gamma = u.getBoundaryQuadratureForScalarField(boundary);
+            e       = u.getBoundaryOperatorForScalarField('e', boundary);
+
+            ev      = v.getBoundaryOperatorForScalarField('e', neighbour_boundary);
+
+            H       = u.H;
+            RHO     = u.RHO;
+            ETA     = u.ETA;
+            C       = u.C;
+            Eu      = u.Eu;
+            eU      = u.eU;
+            eGamma  = u.eGamma;
+            Egamma  = u.Egamma;
+
+            CV       = v.C;
+            Ev      = v.Eu;
+            eV      = v.eU;
+            eGammaV = v.eGamma;
+            nV      = v.getNormal(neighbour_boundary);
+
+            % Reduce stiffness tensors to boundary size
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C{i,j,k,l} = e'*C{i,j,k,l}*e;
+                            CV{i,j,k,l} = ev'*CV{i,j,k,l}*ev;
+                        end
+                    end
+                end
+            end
+
+            % Get elastic closure and penalty
+            [closure, penalty] = obj.elasticObj.interface(boundary, v.elasticObj, neighbour_boundary, type);
+            closure = Eu*closure*Eu';
+            penalty = Eu*penalty*Ev';
+
+            % ---- Tangential tractions are imposed just like traction BC ------
+            % We only need the viscous part
+            closure_tangential = obj.boundary_condition(boundary, {'t', 't'});
+            closure = closure + closure_tangential*Egamma*Egamma';
+
+
+            % ------ Coupling of normal component -----------
+            % Add viscous part of traction coupling
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            for m = 1:dim
+                                closure = closure + 1/2*eU{m}*( (RHO*H)\(e*n{m}*H_gamma*n{j}*n{i}*C{i,j,k,l}*e'*eGamma{k,l}') );
+                                penalty = penalty - 1/2*eU{m}*( (RHO*H)\(e*n{m}*H_gamma*nV{j}*nV{i}*CV{i,j,k,l}*ev'*eGammaV{k,l}') );
+                            end
+                        end
+                    end
+                end
+            end
+
+            % Add penalty to strain rate eq
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            for m = 1:dim
+                                closure = closure - 1/2*eGamma{i,j}*( (H*ETA)\(e*n{l}*n{k}*C{i,j,k,l}*H_gamma*n{m}*e'*eU{m}') );
+                                penalty = penalty - 1/2*eGamma{i,j}*( (H*ETA)\(e*n{l}*n{k}*C{i,j,k,l}*H_gamma*nV{m}*ev'*eV{m}') );
+                            end
+                        end
+                    end
+                end
+            end
+            %-------------------------------------------------
+
+        end
+
+        function [closure, penalty, forcingPenalties] = interfaceNormalTangential(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            tuning = type.tuning;
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            u = obj;
+            v = neighbour_scheme;
+
+            dim = obj.dim;
+
+            n       = u.getNormal(boundary);
+            t       = u.getTangent(boundary);
+            H_gamma = u.getBoundaryQuadratureForScalarField(boundary);
+            e       = u.getBoundaryOperatorForScalarField('e', boundary);
+
+            ev      = v.getBoundaryOperatorForScalarField('e', neighbour_boundary);
+
+            H       = u.H;
+            RHO     = u.RHO;
+            ETA     = u.ETA;
+            C       = u.C;
+            Eu      = u.Eu;
+            eU      = u.eU;
+            eGamma  = u.eGamma;
+            Egamma  = u.Egamma;
+
+            CV       = v.C;
+            Ev      = v.Eu;
+            eV      = v.eU;
+            eGammaV = v.eGamma;
+            nV      = v.getNormal(neighbour_boundary);
+            tV      = v.getTangent(neighbour_boundary);
+
+            % Reduce stiffness tensors to boundary size
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            C{i,j,k,l} = e'*C{i,j,k,l}*e;
+                            CV{i,j,k,l} = ev'*CV{i,j,k,l}*ev;
+                        end
+                    end
+                end
+            end
+
+            % Get elastic closure and penalty
+            [closure, penalty, forcingPenalties] = obj.elasticObj.interface(boundary, v.elasticObj, neighbour_boundary, type);
+            closure = Eu*closure*Eu';
+            penalty = Eu*penalty*Ev';
+
+            for i = 1:numel(forcingPenalties)
+                forcingPenalties{i} = Eu*forcingPenalties{i};
+            end
+            forcing_u_n = forcingPenalties{1};
+            forcing_u_t = forcingPenalties{2};
+
+            % ------ Traction coupling, viscous part -----------
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            for m = 1:dim
+                                % Normal component
+                                closure = closure + 1/2*eU{m}*( (RHO*H)\(e*n{m}*H_gamma*n{j}*n{i}*C{i,j,k,l}*e'*eGamma{k,l}') );
+                                penalty = penalty - 1/2*eU{m}*( (RHO*H)\(e*n{m}*H_gamma*nV{j}*nV{i}*CV{i,j,k,l}*ev'*eGammaV{k,l}') );
+
+                                % Tangential component
+                                closure = closure + 1/2*eU{m}*( (RHO*H)\(e*t{m}*H_gamma*t{j}*n{i}*C{i,j,k,l}*e'*eGamma{k,l}') );
+                                penalty = penalty - 1/2*eU{m}*( (RHO*H)\(e*t{m}*H_gamma*tV{j}*nV{i}*CV{i,j,k,l}*ev'*eGammaV{k,l}') );
+                            end
+                        end
+                    end
+                end
+            end
+            %-------------------------------------------------
+
+            % --- Displacement coupling ----------------------
+            % Add penalty to strain rate eq
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            for m = 1:dim
+                                % Normal component
+                                closure = closure           - 1/2*eGamma{i,j}*( (H*ETA)\(e*n{l}*n{k}*C{i,j,k,l}*H_gamma*n{m}*e'*eU{m}') );
+                                penalty = penalty           - 1/2*eGamma{i,j}*( (H*ETA)\(e*n{l}*n{k}*C{i,j,k,l}*H_gamma*nV{m}*ev'*eV{m}') );
+
+
+                                % Tangential component
+                                closure = closure           - 1/2*eGamma{i,j}*( (H*ETA)\(e*t{l}*n{k}*C{i,j,k,l}*H_gamma*t{m}*e'*eU{m}') );
+                                penalty = penalty           - 1/2*eGamma{i,j}*( (H*ETA)\(e*t{l}*n{k}*C{i,j,k,l}*H_gamma*tV{m}*ev'*eV{m}') );
+                            end
+                            forcing_u_n = forcing_u_n   + 1/2*eGamma{i,j}*( (H*ETA)\(e*n{l}*n{k}*C{i,j,k,l}*H_gamma) );
+                            forcing_u_t = forcing_u_t   + 1/2*eGamma{i,j}*( (H*ETA)\(e*t{l}*n{k}*C{i,j,k,l}*H_gamma) );
+                        end
+                    end
+                end
+            end
+            %-------------------------------------------------
+
+            forcingPenalties{1} = forcing_u_n;
+            forcingPenalties{2} = forcing_u_t;
+
+        end
+
+        % Returns the outward unit normal vector for the boundary specified by the string boundary.
+        % n is a cell of diagonal matrices for each normal component, n{1} = n_1, n{2} = n_2.
+        function n = getNormal(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            n = obj.(['n_' boundary]);
+        end
+
+        % Returns the unit tangent vector for the boundary specified by the string boundary.
+        % t is a cell of diagonal matrices for each normal component, t{1} = t_1, t{2} = t_2.
+        function t = getTangent(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            t = obj.(['tangent_' boundary]);
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2', 'en', 'et', 'tau_n', 'tau_t'})
+
+            o = obj.([op, '_', boundary]);
+
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op -- string
+        function o = getBoundaryOperatorForScalarField(obj, op, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            assertIsMember(op, {'e'})
+
+            switch op
+
+                case 'e'
+                    o = obj.(['e_scalar', '_', boundary]);
+            end
+
+        end
+
+        % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary.
+        % Formula: tau_i = T_ij u_j
+        % op -- string
+        function T = getBoundaryTractionOperator(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            T = obj.(['T', '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary unknowns
+        %
+        % boundary -- string
+        function H = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H = obj.getBoundaryQuadratureForScalarField(boundary);
+            I_dim = speye(obj.dim, obj.dim);
+            H = kron(H, I_dim);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary grid points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadratureForScalarField(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        function N = size(obj)
+            N = (obj.dim + obj.dim^2)*prod(obj.m);
+        end
+    end
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/bcSetupStaggered.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,20 @@
+% Takes a diffOp and a cell array of boundary condition definitions.
+% Each bc is a struct with the fields
+%  * type     -- Type of boundary condition
+%  * boundary -- Boundary identifier
+%  * data     -- A function_handle for a function which provides boundary data.(see below)
+% Also takes S_sign which modifies the sign of the penalty function, [-1,1]
+% Returns a closure matrix and a forcing function S.
+%
+% The boundary data function can either be a function of time or a function of time and space coordinates.
+% In the case where it only depends on time it should return the data as grid function for the boundary.
+% In the case where it also takes space coordinates the number of space coordinates should match the number of dimensions of the problem domain.
+% For example in the 2D case: f(t,x,y).
+function [closure, S] = bcSetupStaggered(diffOp, bcs, S_sign)
+    default_arg('S_sign', 1);
+    assertType(bcs, 'cell');
+    assert(S_sign == 1 || S_sign == -1, 'S_sign must be either 1 or -1');
+
+    [closure, penalties] = scheme.bc.closureSetup(diffOp, bcs);
+    S = scheme.bc.forcingSetupStaggered(diffOp, penalties, bcs, S_sign);
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/+rkparameters/rk4.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,12 @@
+function [a,b,c,s] = rk4()
+
+% Butcher tableau for classical RK$
+s = 4;
+a = sparse(s,s);
+a(2,1) = 1/2;
+a(3,2) = 1/2;
+a(4,3) = 1;
+b = 1/6*[1; 2; 2; 1];
+c = [0; 1/2; 1/2; 1];
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/ExplicitRungeKuttaDiscreteData.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,121 @@
+classdef ExplicitRungeKuttaDiscreteData < time.Timestepper
+    properties
+        D
+        S           % Function handle for time-dependent data
+        data        % Matrix of data vectors, one column per stage
+        k
+        t
+        v
+        m
+        n
+        order
+        a, b, c, s  % Butcher tableau
+        K           % Stage rates
+        U           % Stage approximations
+        T           % Stage times
+    end
+
+
+    methods
+        function obj = ExplicitRungeKuttaDiscreteData(D, S, data, k, t0, v0, order)
+            default_arg('order', 4);
+            default_arg('S', []);
+            default_arg('data', []);
+
+            obj.D = D;
+            obj.S = S;
+            obj.k = k;
+            obj.t = t0;
+            obj.v = v0;
+            obj.m = length(v0);
+            obj.n = 0;
+            obj.order = order;
+            obj.data = data;
+
+            switch order
+            case 4
+                [obj.a, obj.b, obj.c, obj.s] = time.rkparameters.rk4();
+            otherwise
+                error('That RK method is not available');
+            end
+
+            obj.K = zeros(obj.m, obj.s);
+            obj.U = zeros(obj.m, obj.s);
+
+        end
+
+        function [v,t,U,T,K] = getV(obj)
+            v = obj.v;
+            t = obj.t;
+            U = obj.U; % Stage approximations in previous time step.
+            T = obj.T; % Stage times in previous time step.
+            K = obj.K; % Stage rates in previous time step.
+        end
+
+        function [a,b,c,s] = getTableau(obj)
+            a = obj.a;
+            b = obj.b;
+            c = obj.c;
+            s = obj.s;
+        end
+
+        % Returns quadrature weights for stages in one time step
+        function quadWeights = getTimeStepQuadrature(obj)
+            [~, b] = obj.getTableau();
+            quadWeights = obj.k*b;
+        end
+
+        function obj = step(obj)
+            v = obj.v;
+            a = obj.a;
+            b = obj.b;
+            c = obj.c;
+            s = obj.s;
+            S = obj.S;
+            dt = obj.k;
+            K = obj.K;
+            U = obj.U;
+            D = obj.D;
+            data = obj.data;
+
+            for i = 1:s
+                U(:,i) = v;
+                for j = 1:i-1
+                    U(:,i) = U(:,i) + dt*a(i,j)*K(:,j);
+                end
+
+                K(:,i) = D*U(:,i);
+                obj.T(i) = obj.t + c(i)*dt;
+
+                % Data from continuous function and discrete time-points.
+                if ~isempty(S)
+                    K(:,i) = K(:,i) + S(obj.T(i));
+                end
+                if ~isempty(data)
+                    K(:,i) = K(:,i) + data(:,obj.n*s + i);
+                end
+
+            end
+
+            obj.v = v + dt*K*b;
+            obj.t = obj.t + dt;
+            obj.n = obj.n + 1;
+            obj.U = U;
+            obj.K = K;
+        end
+    end
+
+
+    methods (Static)
+        function k = getTimeStep(lambda, order)
+            default_arg('order', 4);
+            switch order
+            case 4
+                k = time.rk4.get_rk4_time_step(lambda);
+            otherwise
+                error('Time-step function not available for this order');
+            end
+        end
+    end
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/ExplicitRungeKuttaSecondOrderDiscreteData.m	Thu Mar 10 16:54:26 2022 +0100
@@ -0,0 +1,129 @@
+classdef ExplicitRungeKuttaSecondOrderDiscreteData < time.Timestepper
+    properties
+        k
+        t
+        w
+        m
+        D
+        E
+        M
+        C_cont % Continuous part (function handle) of forcing on first order form.
+        C_discr% Discrete part (matrix) of forcing on first order form.
+        n
+        order
+        tsImplementation % Time stepper object, RK first order form,
+                         % which this wraps around.
+    end
+
+
+    methods
+        % Solves u_tt = Du + Eu_t + S by
+        % Rewriting on first order form:
+        %   w_t = M*w + C(t)
+        % where
+        %   M = [
+        %      0, I;
+        %      D, E;
+        %   ]
+        % and
+        %   C(t) = [
+        %      0;
+        %      S(t)
+        %   ]
+        % D, E, should be matrices (or empty for zero)
+        % They can also be omitted by setting them equal to the empty matrix.
+        % S = S_cont + S_discr, where S_cont is a function handle
+        % S_discr a matrix of data vectors, one column per stage.
+        function obj = ExplicitRungeKuttaSecondOrderDiscreteData(D, E, S_cont, S_discr, k, t0, v0, v0t, order)
+            default_arg('order', 4);
+            default_arg('S_cont', []);
+            default_arg('S_discr', []);
+            obj.D = D;
+            obj.E = E;
+            obj.m = length(v0);
+            obj.n = 0;
+
+            default_arg('D', sparse(obj.m, obj.m) );
+            default_arg('E', sparse(obj.m, obj.m) );
+
+            obj.k = k;
+            obj.t = t0;
+            obj.w = [v0; v0t];
+
+            I = speye(obj.m);
+            O = sparse(obj.m,obj.m);
+
+            obj.M = [
+                O, I;
+                D, E;
+            ];
+
+            % Build C_cont
+            if ~isempty(S_cont)
+                obj.C_cont = @(t)[
+                    sparse(obj.m,1);
+                    S_cont(t)
+                            ];
+            else
+                obj.C_cont = [];
+            end
+
+            % Build C_discr
+            if ~isempty(S_discr)
+                [~, nt] = size(S_discr);
+                obj.C_discr = [sparse(obj.m, nt);
+                                S_discr
+                ];
+            else
+                obj.C_discr = [];
+            end
+            obj.tsImplementation = time.ExplicitRungeKuttaDiscreteData(obj.M, obj.C_cont, obj.C_discr,...
+                                                                        k, obj.t, obj.w, order);
+        end
+
+        function [v,t,U,T,K] = getV(obj)
+            [w,t,U,T,K] = obj.tsImplementation.getV();
+
+            v = w(1:end/2);
+            U = U(1:end/2, :); % Stage approximations in previous time step.
+            K = K(1:end/2, :); % Stage rates in previous time step.
+            % T: Stage times in previous time step.
+        end
+
+        function [vt,t,U,T,K] = getVt(obj)
+            [w,t,U,T,K] = obj.tsImplementation.getV();
+
+            vt = w(end/2+1:end);
+            U = U(end/2+1:end, :); % Stage approximations in previous time step.
+            K = K(end/2+1:end, :); % Stage rates in previous time step.
+            % T: Stage times in previous time step.
+        end
+
+        function [a,b,c,s] = getTableau(obj)
+            [a,b,c,s] = obj.tsImplementation.getTableau();
+        end
+
+        % Returns quadrature weights for stages in one time step
+        function quadWeights = getTimeStepQuadrature(obj)
+            [~, b] = obj.getTableau();
+            quadWeights = obj.k*b;
+        end
+
+        % Use RK for first order form to step
+        function obj = step(obj)
+            obj.tsImplementation.step();
+            [v, t] = obj.tsImplementation.getV();
+            obj.w = v;
+            obj.t = t;
+            obj.n = obj.n + 1;
+        end
+    end
+
+    methods (Static)
+        function k = getTimeStep(lambda, order)
+            default_arg('order', 4);
+            k = obj.tsImplementation.getTimeStep(lambda, order);
+        end
+    end
+
+end
\ No newline at end of file
--- a/.hgtags	Thu Feb 17 18:55:11 2022 +0100
+++ b/.hgtags	Thu Mar 10 16:54:26 2022 +0100
@@ -2,3 +2,4 @@
 0776fa4754ff0c1918f6e1278c66f48c62d05736 grids0.1
 b723495cdb2f96314d7b3f0aa79723a7dc088c7d v0.2
 08f3ffe63f484d02abce8df4df61e826f568193f elastic1.0
+08f3ffe63f484d02abce8df4df61e826f568193f Heimisson2018