changeset 350:5d5652fe826a feature/hypsyst

A commit before I try resolving the performance issues
author Ylva Rydin <ylva.rydin@telia.com>
date Wed, 02 Nov 2016 00:02:01 +0100
parents cd6a29ab3746
children 7cc3d5bd3692
files +grid/Ti3D.m +scheme/Hypsyst2dCurve.m +scheme/Hypsyst3d.m +scheme/Hypsyst3dCurve.m
diffstat 4 files changed, 516 insertions(+), 35 deletions(-) [+]
line wrap: on
line diff
--- a/+grid/Ti3D.m	Thu Oct 13 09:34:30 2016 +0200
+++ b/+grid/Ti3D.m	Wed Nov 02 00:02:01 2016 +0100
@@ -25,34 +25,34 @@
                 one=0*ETA+1;
                 zero=0*ETA;
                 
-                Sw = gw((1-ETA),(1-ZETA));
-                Se = ge(ETA,ZETA);
-                Ss = gs(XI,(1-ZETA));
-                Sn = gn((1-XI),ZETA);
-                Sb = gb(XI,ETA);
-                St = gt((1-XI),(1-ETA));
+                Sw = gw(ETA,(1-ZETA));
+                Se = ge((1-ETA),(1-ZETA));
+                Ss = gs(XI,ZETA);
+                Sn = gn((1-XI),(1-ZETA));
+                Sb = gb((1-XI),ETA);
+                St = gt(XI,ETA);
                 
-                Ewt = gw(1-ETA,zero);
-                Ewb = gw(1-ETA,one);
-                Ews = gw(one,1-ZETA);
-                Ewn = gw(zero,1-ZETA);
-                Eet = ge(ETA,one);
-                Eeb = ge(ETA,zero);
-                Ees = ge(0*one,ZETA);
-                Een = ge(one,ZETA);
-                Enb = gn(1-XI,zero);
-                Ent = gn(1-XI,one);
-                Est = gs(XI,zero);
-                Esb = gs(XI,one);
+                Ewt = gw(ETA,zero);
+                Ewb = gw(ETA,one);               
+                Ews = gw(zero,1-ZETA);
+                Ewn = gw(one,1-ZETA);
+                Eet = ge(1-ETA,zero);
+                Eeb = ge(1-ETA,one);
+                Ees = ge(one,1-ZETA);
+                Een = ge(zero,1-ZETA);
+                Enb = gn(1-XI,one);
+                Ent = gn(1-XI,zero);
+                Est = gs(XI,one);
+                Esb = gs(XI,zero);
                 
-                Cwbs = gw(one,one);
-                Cwbn = gw(zero,one);
-                Cwts = gw(one,zero);
-                Cwtn = gw(zero,zero);
-                Cebs = ge(zero,zero);
-                Cebn = ge(one,zero);
-                Cets = ge(zero,one);
-                Cetn = ge(one,one);
+                Cwbs = gw(zero,one);
+                Cwbn = gw(one,one);
+                Cwts = gw(zero,zero);
+                Cwtn = gw(one,zero);
+                Cebs = ge(one,one);
+                Cebn = ge(zero,one);
+                Cets = ge(one,zero);
+                Cetn = ge(zero,zero);
                 
                 
                 X1 = (1-XI).*Sw(1,:,:) + XI.*Se(1,:,:);
@@ -104,7 +104,7 @@
             obj.V = @V_fun;
         end
         
-        
+        %Should be rewritten so that the input is xi eta zeta 
         function [X,Y,Z] = map(obj,XI,ETA,ZETA)
             
             V = obj.V;
@@ -247,6 +247,6 @@
         %                 grid.place_label(ps,'s');
         %                 grid.place_label(pn,'n');
         %             end
-        %         end
+ %                end
     end
 end
\ No newline at end of file
--- a/+scheme/Hypsyst2dCurve.m	Thu Oct 13 09:34:30 2016 +0200
+++ b/+scheme/Hypsyst2dCurve.m	Wed Nov 02 00:02:01 2016 +0100
@@ -259,7 +259,8 @@
                     L=obj.evaluateCoefficientMatrix(L,eta_x,eta_y,[],[]);
                     side=max(length(xi));
                 case {'n','N','north'}
-                   e_=obj.e_n;
+                   e_=obj.e_n;            for ii=1:rows
+
                     mat=obj.Bhat;
                     boundPos='r';
                     Hi=obj.Hetai;
--- a/+scheme/Hypsyst3d.m	Thu Oct 13 09:34:30 2016 +0200
+++ b/+scheme/Hypsyst3d.m	Wed Nov 02 00:02:01 2016 +0100
@@ -10,6 +10,7 @@
         
         D % non-stabalized scheme operator
         A, B, C, E
+        Aevaluated,Bevaluated,Cevaluated, Eevaluated
         
         H % Discrete norm
         % Norms in the x, y and z directions
@@ -61,10 +62,10 @@
             obj.Xz=kr(obj.x,ones(m_y,1));
             obj.Yz=kr(ones(m_z,1),obj.y);
             
-            Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z);
-            Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z);
-            Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z);
-            Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z);
+            obj.Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z);
+            obj.Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z);
+            obj.Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z);
+            obj.Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z);
             
             obj.n = length(A(obj.params,0,0,0));
             
@@ -82,7 +83,7 @@
             D1_y = kr(I_n, I_x, ops_y.D1,I_z);
             obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z);
             D1_z = kr(I_n, I_x, I_y,ops_z.D1);
-            obj.Hzi = kr(I_n, I_x,I_y, ops_y.HI);
+            obj.Hzi = kr(I_n, I_x,I_y, ops_z.HI);
             
             obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z);
             obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z);
@@ -95,7 +96,7 @@
             obj.h=[ops_x.h ops_y.h ops_x.h];
             obj.order=order;
             
-            obj.D=-Aevaluated*D1_x-Bevaluated*D1_y-Cevaluated*D1_z-Eevaluated;
+            obj.D=-obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated;
         end
         
         % Closure functions return the opertors applied to the own doamin to close the boundary
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Hypsyst3dCurve.m	Wed Nov 02 00:02:01 2016 +0100
@@ -0,0 +1,479 @@
+classdef Hypsyst3dCurve < scheme.Scheme
+    properties
+        m % Number of points in each direction, possibly a vector
+        n %size of system
+        h % Grid spacing
+        X, Y, Z% Values of x and y for each grid point
+        Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces
+        
+        xi,eta,zeta
+        Xi, Eta, Zeta
+        
+        Eta_xi, Zeta_xi, Xi_eta, Zeta_eta, Xi_zeta, Eta_zeta
+        
+        X_xi, X_eta, X_zeta,Y_xi,Y_eta,Y_zeta,Z_xi,Z_eta,Z_zeta
+        Aev
+        
+        metric_terms
+        
+        order % Order accuracy for the approximation
+        
+        D % non-stabalized scheme operator
+        Aevaluated, Bevaluated, Cevaluated, Eevaluated
+        Ahat, Bhat, Chat, E
+        A,B,C
+        
+        J, Ji
+        
+        H % Discrete norm
+        % Norms in the x, y and z directions
+        Hxii,Hetai,Hzetai, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
+        I_xi,I_eta,I_zeta, I_N,onesN
+        e_w, e_e, e_s, e_n, e_b, e_t
+        index_w, index_e,index_s,index_n, index_b, index_t
+        params %parameters for the coeficient matrice
+    end
+    
+    
+    methods
+        function obj = Hypsyst3dCurve(m, order, A, B,C, E, params,ti)
+            xilim ={0 1};
+            etalim = {0 1};
+            zetalim = {0 1};
+            
+            if length(m) == 1
+                m = [m m m];
+            end
+            m_xi = m(1);
+            m_eta = m(2);
+            m_zeta=m(3);
+            m_tot=m_xi*m_eta*m_zeta;
+            obj.params = params;
+            obj.n = length(A(obj,0,0,0));
+            
+            obj.m=m;
+            
+            obj.order=order;
+            obj.onesN=ones(obj.n);
+            ops_xi = sbp.D2Standard(m_xi,xilim,order);
+            ops_eta = sbp.D2Standard(m_eta,etalim,order);
+            ops_zeta = sbp.D2Standard(m_zeta,zetalim,order);
+            
+            obj.xi = ops_xi.x;
+            obj.eta = ops_eta.x;
+            obj.zeta = ops_zeta.x;
+            
+            obj.Xi = kr(obj.xi,ones(m_eta,1),ones(m_zeta,1));%% Que pasa?
+            obj.Eta = kr(ones(m_xi,1),obj.eta,ones(m_zeta,1));
+            obj.Zeta = kr(ones(m_xi,1),ones(m_eta,1),obj.zeta);
+            
+            obj.Eta_xi=kr(obj.eta,ones(m_xi,1));
+            obj.Zeta_xi=kr(ones(m_eta,1),obj.zeta);  
+            
+            obj.Xi_eta=kr(obj.xi,ones(m_zeta,1));
+            obj.Zeta_eta=kr(ones(m_xi,1),obj.zeta);
+            
+            obj.Xi_zeta=kr(obj.xi,ones(m_eta,1));
+            obj.Eta_zeta=kr(ones(m_zeta,1),obj.eta);
+            
+            [X,Y,Z] = ti.map(obj.Xi,obj.Eta,obj.Zeta);
+            obj.X=X;
+            obj.Y=Y;
+            obj.Z=Z;
+            
+            I_n = eye(obj.n);
+            I_xi = speye(m_xi);
+            obj.I_xi = I_xi;
+            I_eta = speye(m_eta);
+            obj.I_eta = I_eta;
+            I_zeta = speye(m_zeta); 
+            obj.I_zeta = I_zeta;
+            
+ 
+            O_xi=ones(m_xi,1);
+            O_eta=ones(m_eta,1);
+            O_zeta=ones(m_zeta,1);
+            
+            D1_xi = kr(ops_xi.D1, I_eta,I_zeta);
+            obj.Hxii = kr(I_n, ops_xi.HI, I_eta,I_zeta);
+            D1_eta = kr(I_xi, ops_eta.D1,I_zeta);
+            obj.Hetai = kr(I_n, I_xi, ops_eta.HI,I_zeta);
+            D1_zeta = kr(I_xi, I_eta,ops_zeta.D1);
+            obj.Hzetai = kr(I_n, I_xi,I_eta, ops_zeta.HI);
+            obj.h=[ops_xi.h ops_eta.h ops_zeta.h];
+            
+            obj.e_w = kr(I_n, ops_xi.e_l, I_eta,I_zeta);
+            obj.e_e = kr(I_n, ops_xi.e_r, I_eta,I_zeta);
+            obj.e_s = kr(I_n, I_xi, ops_eta.e_l,I_zeta);
+            obj.e_n = kr(I_n, I_xi, ops_eta.e_r,I_zeta);
+            obj.e_b = kr(I_n, I_xi, I_eta, ops_zeta.e_l);
+            obj.e_t = kr(I_n, I_xi, I_eta, ops_zeta.e_r);
+            
+            obj.A=A;
+            obj.B=B;
+            obj.C=C;
+            
+            obj.X_xi=D1_xi*X;
+            obj.X_eta=D1_eta*X;
+            obj.X_zeta=D1_zeta*X;
+            obj.Y_xi=D1_xi*Y;
+            obj.Y_eta=D1_eta*Y;
+            obj.Y_zeta=D1_zeta*Y;
+            obj.Z_xi=D1_xi*Z;
+            obj.Z_eta=D1_eta*Z;
+            obj.Z_zeta=D1_zeta*Z;
+            
+            D1_xi=kr(I_n,D1_xi);
+            D1_eta=kr(I_n,D1_eta);
+            D1_zeta=kr(I_n,D1_zeta);
+            
+            obj.index_w=(kr(ops_xi.e_l, O_eta,O_zeta)==1);
+            obj.index_e=(kr(ops_xi.e_r, O_eta,O_zeta)==1);
+            obj.index_s=(kr(O_xi, ops_eta.e_l,O_zeta)==1);
+            obj.index_n=(kr(O_xi, ops_eta.e_r,O_zeta)==1);
+            obj.index_b=(kr(O_xi, O_eta, ops_zeta.e_l)==1);
+            obj.index_t=(kr(O_xi, O_eta, ops_zeta.e_r)==1);
+     
+             
+            obj.Ahat=@transform_coefficient_matrix;
+            obj.Bhat=@transform_coefficient_matrix;
+            obj.Chat=@transform_coefficient_matrix;
+            obj.E=@(obj,x,y,z,~,~,~,~,~,~)E(obj,x,y,z);
+            
+            obj.Aevaluated = obj.evaluateCoefficientMatrix(obj.Ahat,obj.X, obj.Y,obj.Z, obj.X_eta,obj.X_zeta,obj.Y_eta,obj.Y_zeta,obj.Z_eta,obj.Z_zeta);
+            obj.Bevaluated = obj.evaluateCoefficientMatrix(obj.Bhat,obj.X, obj.Y,obj.Z, obj.X_zeta,obj.X_xi,obj.Y_zeta,obj.Y_xi,obj.Z_zeta,obj.Z_xi);
+            obj.Cevaluated = obj.evaluateCoefficientMatrix(obj.Chat,obj.X,obj.Y,obj.Z, obj.X_xi,obj.X_eta,obj.Y_xi,obj.Y_eta,obj.Z_xi,obj.Z_eta);
+            obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]);
+            
+            obj.J=obj.X_xi.*obj.Y_eta.*obj.Z_zeta...
+                +obj.X_zeta.*obj.Y_xi.*obj.Z_eta...
+                +obj.X_eta.*obj.Y_zeta.*obj.Z_xi...
+                -obj.X_xi.*obj.Y_zeta.*obj.Z_eta...
+                -obj.X_eta.*obj.Y_xi.*obj.Z_zeta...
+                -obj.X_zeta.*obj.Y_eta.*obj.Z_xi; 
+            
+            obj.Ji =kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot));
+       
+            obj.D=obj.Ji*(-obj.Aevaluated*D1_xi-obj.Bevaluated*D1_eta -obj.Cevaluated*D1_zeta)-obj.Eevaluated;
+        end
+        
+        function [ret]=transform_coefficient_matrix(obj,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2)
+            ret=obj.A(obj,x,y,z).*(y_1.*z_2-z_1.*y_2);
+            ret=ret+obj.B(obj,x,y,z).*(x_2.*z_1-x_1.*z_2);
+            ret=ret+obj.C(obj,x,y,z).*(x_1.*y_2-x_2.*y_1);
+        end
+        
+        
+        % Closure functions return the opertors applied to the own doamin to close the boundary
+        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        function [closure, penalty] = boundary_condition(obj,boundary,type,L)
+            default_arg('type','char');
+            BM=boundary_matrices(obj,boundary);
+            
+            switch type
+                case{'c','char'}
+                    [closure,penalty]=boundary_condition_char(obj,BM);
+                case{'general'}
+                    [closure,penalty]=boundary_condition_general(obj,BM,boundary,L);
+                otherwise
+                    error('No such boundary condition')
+            end
+        end
+        
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            error('An interface function does not exist yet');
+        end
+        
+        function N = size(obj)
+            N = obj.m;
+        end
+        
+        function [ret] = evaluateCoefficientMatrix(obj,mat, X, Y, Z , x_1 , x_2 , y_1 , y_2 , z_1 , z_2)
+            params=obj.params;
+            side=max(length(X),length(Y));
+            if isa(mat,'function_handle')
+                [rows,cols]=size(mat(obj,0,0,0,0,0,0,0,0,0));
+                x_1=kr(obj.onesN,x_1);
+                x_2=kr(obj.onesN,x_2);
+                y_1=kr(obj.onesN,y_1);
+                y_2=kr(obj.onesN,y_2);
+                z_1=kr(obj.onesN,z_1);
+                z_2=kr(obj.onesN,z_2);
+                matVec=mat(obj,X',Y',Z',x_1',x_2',y_1',y_2',z_1',z_2');
+                matVec=sparse(matVec);
+            else
+                matVec=mat;
+                [rows,cols]=size(matVec);
+                side=max(length(X),length(Y));
+                cols=cols/side;
+            end
+            ret=kron(ones(rows,cols),speye(side));
+            
+            for ii=1:rows
+                for jj=1:cols
+                    ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side));
+                end
+            end
+        end
+        
+        
+        function [BM]=boundary_matrices(obj,boundary)
+            params=obj.params;
+            BM.boundary=boundary;
+            switch boundary
+                case {'w','W','west'}
+                    BM.e_=obj.e_w;
+                    mat=obj.Ahat;
+                    BM.boundpos='l';
+                    BM.Hi=obj.Hxii;
+                    BM.index=obj.index_w;
+                    BM.x_1=obj.X_eta(BM.index);
+                    BM.x_2=obj.X_zeta(BM.index);
+                    BM.y_1=obj.Y_eta(BM.index);
+                    BM.y_2=obj.Y_zeta(BM.index);
+                    BM.z_1=obj.Z_eta(BM.index);
+                    BM.z_2=obj.Z_zeta(BM.index);
+                case {'e','E','east'}
+                    BM.e_=obj.e_e;
+                    mat=obj.Ahat;
+                    BM.boundpos='r';
+                    BM.Hi=obj.Hxii;
+                    BM.index=obj.index_e;
+                    BM.x_1=obj.X_eta(BM.index);
+                    BM.x_2=obj.X_zeta(BM.index);
+                    BM.y_1=obj.Y_eta(BM.index);
+                    BM.y_2=obj.Y_zeta(BM.index);
+                    BM.z_1=obj.Z_eta(BM.index);
+                    BM.z_2=obj.Z_zeta(BM.index);
+                case {'s','S','south'}
+                    BM.e_=obj.e_s;
+                    mat=obj.Bhat;
+                    BM.boundpos='l';
+                    BM.Hi=obj.Hetai;
+                    BM.index=obj.index_s;
+                    BM.x_1=obj.X_zeta(BM.index);
+                    BM.x_2=obj.X_xi(BM.index);
+                    BM.y_1=obj.Y_zeta(BM.index);
+                    BM.y_2=obj.Y_xi(BM.index);
+                    BM.z_1=obj.Z_zeta(BM.index);
+                    BM.z_2=obj.Z_xi(BM.index);
+                case {'n','N','north'}
+                    BM.e_=obj.e_n;
+                    mat=obj.Bhat;
+                    BM.boundpos='r';
+                    BM.Hi=obj.Hetai;
+                    BM.index=obj.index_n;
+                    BM.x_1=obj.X_zeta(BM.index);
+                    BM.x_2=obj.X_xi(BM.index);
+                    BM.y_1=obj.Y_zeta(BM.index);
+                    BM.y_2=obj.Y_xi(BM.index);
+                    BM.z_1=obj.Z_zeta(BM.index);
+                    BM.z_2=obj.Z_xi(BM.index);
+                case{'b','B','Bottom'}
+                    BM.e_=obj.e_b;
+                    mat=obj.Chat;
+                    BM.boundpos='l';
+                    BM.Hi=obj.Hzetai;
+                    BM.index=obj.index_b;
+                    BM.x_1=obj.X_xi(BM.index);
+                    BM.x_2=obj.X_eta(BM.index);
+                    BM.y_1=obj.Y_xi(BM.index);
+                    BM.y_2=obj.Y_eta(BM.index);
+                    BM.z_1=obj.Z_xi(BM.index);
+                    BM.z_2=obj.Z_eta(BM.index);
+                case{'t','T','Top'}
+                    BM.e_=obj.e_t;
+                    mat=obj.Chat;
+                    BM.boundpos='r';
+                    BM.Hi=obj.Hzetai;
+                    BM.index=obj.index_t;
+                    BM.x_1=obj.X_xi(BM.index);
+                    BM.x_2=obj.X_eta(BM.index);
+                    BM.y_1=obj.Y_xi(BM.index);
+                    BM.y_2=obj.Y_eta(BM.index);
+                    BM.z_1=obj.Z_xi(BM.index);
+                    BM.z_2=obj.Z_eta(BM.index);
+            end
+            [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(BM.index),obj.Y(BM.index),obj.Z(BM.index),...
+                BM.x_1,BM.x_2,BM.y_1,BM.y_2,BM.z_1,BM.z_2);
+            BM.side=sum(BM.index);
+            BM.pos=signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3);
+        end
+        
+        
+        function [closure, penalty]=boundary_condition_char(obj,BM)
+            side = BM.side;
+            pos = BM.pos;
+            neg = BM.neg;
+            zeroval=BM.zeroval;
+            V = BM.V;
+            Vi = BM.Vi;
+            Hi=BM.Hi;
+            D=BM.D;
+            e_=BM.e_;
+            
+            switch BM.boundpos
+                case {'l'}
+                    tau=sparse(obj.n*side,pos);
+                    Vi_plus=Vi(1:pos,:);
+                    tau(1:pos,:)=-abs(D(1:pos,1:pos));
+                    closure=Hi*e_*V*tau*Vi_plus*e_';
+                    penalty=-Hi*e_*V*tau*Vi_plus;
+                case {'r'}
+                    tau=sparse(obj.n*side,neg);
+                    tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
+                    Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:);
+                    closure=Hi*e_*V*tau*Vi_minus*e_';
+                    penalty=-Hi*e_*V*tau*Vi_minus;
+            end
+        end
+        
+        
+        function [closure,penalty]=boundary_condition_general(obj,BM,boundary,L)
+            side = BM.side;
+            pos = BM.pos;
+            neg = BM.neg;
+            zeroval=BM.zeroval;
+            V = BM.V;
+            Vi = BM.Vi;
+            Hi=BM.Hi;
+            D=BM.D;
+            e_=BM.e_;
+            index=BM.index;
+            
+            switch BM.boundary
+                case{'b','B','bottom'}
+                    Ji_vec=diag(obj.Ji);
+                    Ji=diag(Ji_vec(index));
+                    Zeta_x=Ji*(obj.Y_xi(index).*obj.Z_eta(index)-obj.Z_xi(index).*obj.Y_eta(index));
+                    Zeta_y=Ji*(obj.X_eta(index).*obj.Z_xi(index)-obj.X_xi(index).*obj.Z_eta(index));
+                    Zeta_z=Ji*(obj.X_xi(index).*obj.Y_eta(index)-obj.Y_xi(index).*obj.X_eta(index));
+                    
+                    L=obj.evaluateCoefficientMatrix(L,Zeta_x,Zeta_y,Zeta_z,[],[],[],[],[],[]);
+            end
+            
+            switch BM.boundpos
+                case {'l'}
+                    tau=sparse(obj.n*side,pos);
+                    Vi_plus=Vi(1:pos,:);
+                    Vi_minus=Vi(pos+zeroval+1:obj.n*side,:);
+                    V_plus=V(:,1:pos);
+                    V_minus=V(:,(pos+zeroval)+1:obj.n*side);
+                    
+                    tau(1:pos,:)=-abs(D(1:pos,1:pos));
+                    R=-inv(L*V_plus)*(L*V_minus);
+                    closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
+                    penalty=-Hi*e_*V*tau*inv(L*V_plus)*L;
+                case {'r'}
+                    tau=sparse(obj.n*side,neg);
+                    tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
+                    Vi_plus=Vi(1:pos,:);
+                    Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:);
+                    
+                    V_plus=V(:,1:pos);
+                    V_minus=V(:,(pos+zeroval)+1:obj.n*side);
+                    R=-inv(L*V_minus)*(L*V_plus);
+                    closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
+                    penalty=-Hi*e_*V*tau*inv(L*V_minus)*L;
+            end
+        end
+        
+        
+        function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2)
+            params=obj.params;
+            eps=10^(-10);
+            if(sum(abs(x_1))>eps)
+                syms x_1s
+            else
+                x_1s=0;
+            end
+            
+            if(sum(abs(x_2))>eps)
+            syms x_2s;
+            else
+                x_2s=0;
+            end
+        
+              
+            if(sum(abs(y_1))>eps)
+                syms y_1s
+            else
+                y_1s=0;
+            end
+            
+            if(sum(abs(y_2))>eps)
+            syms y_2s;
+            else
+                y_2s=0;
+            end
+            
+             
+            if(sum(abs(z_1))>eps)
+                syms z_1s
+            else
+                z_1s=0;
+            end
+            
+            if(sum(abs(z_2))>eps)
+            syms z_2s;
+            else
+                z_2s=0;
+            end 
+            
+            syms xs ys zs 
+            [V, D]=eig(mat(obj,xs,ys,zs,x_1s,x_2s,y_1s,y_2s,z_1s,z_2s));
+            Vi=inv(V);
+            
+            syms x_1s x_2s y_1s y_2s z_1s z_2s
+%             V= matlabFunction(V);
+%             D= matlabFunction(D);
+%             Vi= matlabFunction(Vi);
+%             
+%             xs=x;
+%             ys=y;
+%             zs=z;
+%             x_1s=x_1;
+%             x_2s=x_2;
+%             y_1s=y_1;
+%             y_2s=y_2;
+%             z_1s=z_1;
+%             z_2s=z_2;
+                         
+            side=max(length(x),length(y));
+            Dret=zeros(obj.n,side*obj.n);
+            Vret=zeros(obj.n,side*obj.n);
+            Viret=zeros(obj.n,side*obj.n);
+            
+            for ii=1:obj.n
+                for jj=1:obj.n
+                    Dpart=matlabFunction(D(jj,ii),'Vars',[xs ys zs x_1s x_2s y_1s y_2s z_1s z_2s]);
+                    Vpart=matlabFunction(V(jj,ii),'Vars',[xs ys zs x_1s x_2s y_1s y_2s z_1s z_2s]);
+                    Vipart=matlabFunction(V(jj,ii),'Vars',[xs ys zs x_1s x_2s y_1s y_2s z_1s z_2s]);
+                    Dret(jj,(ii-1)*side+1:side*ii)=sparse(Dpart(x,y,z,x_1,x_2,y_1,y_2,z_1,z_2));
+                    Vret(jj,(ii-1)*side+1:side*ii)=sparse(Vpart(x,y,z,x_1,x_2,y_1,y_2,z_1,z_2));
+                    Viret(jj,(ii-1)*side+1:side*ii)=sparse(Vipart(x,y,z,x_1,x_2,y_1,y_2,z_1,z_2));
+                end
+            end
+            
+            D=sparse(Dret);
+            V=sparse(Vret);
+            Vi=sparse(Viret);
+            V=obj.evaluateCoefficientMatrix(V,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2);
+            D=obj.evaluateCoefficientMatrix(D,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2);
+            Vi=obj.evaluateCoefficientMatrix(Vi,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2);
+            DD=diag(D);
+            
+            poseig=(DD>0);
+            zeroeig=(DD==0);
+            negeig=(DD<0);
+            
+            D=diag([DD(poseig); DD(zeroeig); DD(negeig)]);
+            V=[V(:,poseig) V(:,zeroeig) V(:,negeig)];
+            %Vi=inv(V);
+            signVec=[sum(poseig),sum(zeroeig),sum(negeig)];
+        end
+    end
+    end