changeset 491:26125cfefe11 feature/quantumTriangles

Schrodinger 2d runs without exploding with fixed coordinates
author Ylva Rydin <ylva.rydin@telia.com>
date Fri, 10 Feb 2017 14:29:53 +0100
parents b13d44271ead
children 6b95a894cbd7
files +grid/Schrodinger2dCurve.m +scheme/Schrodinger2dCurve.m +scheme/Schrodinger2dCurve.m~
diffstat 3 files changed, 552 insertions(+), 290 deletions(-) [+]
line wrap: on
line diff
--- a/+grid/Schrodinger2dCurve.m	Thu Feb 09 11:41:21 2017 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,290 +0,0 @@
-classdef Schrodinger2dCurve < scheme.Scheme
-    properties
-        m % Number of points in each direction, possibly a vector
-        h % Grid spacing
-
-        grid
-
-        order % Order accuracy for the approximation
-
-        D % non-stabalized scheme operator
-        M % Derivative norm
-        H % Discrete norm
-        Hi
-        H_u, H_v % Norms in the x and y directions
-        Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
-        Hi_u, Hi_v
-        Hiu, Hiv
-        D1_v D1_u
-        D2_v D2_u
-        Du Dv
-        
- 
-        e_w, e_e, e_s, e_n
-        du_w, dv_w
-        du_e, dv_e
-        du_s, dv_s
-        du_n, dv_n
-        g_1
-        g_2
-        
-        p,p_tau
-    end
-
-    methods
-        function obj = Schrodinger2dCurve(g ,order, opSet, p,p_tau)
-            default_arg('opSet',@sbp.D2Variable);
-            default_arg('c', 1);
-
-            assert(isa(g, 'grid.Curvilinear'))
-            
-            obj.p=p;
-            obj.p_tau=p_tau;
-            obj.c=1;
-            
-            m = g.size();
-            m_u = m(1);
-            m_v = m(2);
-            m_tot = g.N();
-
-            h = g.scaling();
-            h_u = h(1);
-            h_v = h(2);
-
-            % Operators
-            ops_u = opSet(m_u, {0, 1}, order);
-            ops_v = opSet(m_v, {0, 1}, order);
-
-            I_u = speye(m_u);
-            I_v = speye(m_v);
-
-            D1_u = ops_u.D1;
-           
-            H_u =  ops_u.H;
-            Hi_u = ops_u.HI;
-            e_l_u = ops_u.e_l;
-            e_r_u = ops_u.e_r;
-            d1_l_u = ops_u.d1_l;
-            d1_r_u = ops_u.d1_r;
-
-            obj.D1_v = ops_v.D1;
-            obj.D2_v = ops_v.D2;
-            H_v =  ops_v.H;
-            Hi_v = ops_v.HI;
-            e_l_v = ops_v.e_l;
-            e_r_v = ops_v.e_r;
-            d1_l_v = ops_v.d1_l;
-            d1_r_v = ops_v.d1_r;
-
-            obj.Du = kr(D1_u,I_v);
-            obj.Dv = kr(I_u,D1_v);
-
-            obj.H = kr(H_u,H_v);
-            obj.Hi = kr(Hi_u,Hi_v);
-            obj.Hu  = kr(H_u,I_v);
-            obj.Hv  = kr(I_u,H_v);
-            obj.Hiu = kr(Hi_u,I_v);
-            obj.Hiv = kr(I_u,Hi_v);
-
-            obj.e_w  = kr(e_l_u,I_v);
-            obj.e_e  = kr(e_r_u,I_v);
-            obj.e_s  = kr(I_u,e_l_v);
-            obj.e_n  = kr(I_u,e_r_v);
-            obj.du_w = kr(d1_l_u,I_v);
-            obj.dv_w = (obj.e_w'*Dv)';
-            obj.du_e = kr(d1_r_u,I_v);
-            obj.dv_e = (obj.e_e'*Dv)';
-            obj.du_s = (obj.e_s'*Du)';
-            obj.dv_s = kr(I_u,d1_l_v);
-            obj.du_n = (obj.e_n'*Du)';
-            obj.dv_n = kr(I_u,d1_r_v);
-
-%             obj.x_u = x_u;
-%             obj.x_v = x_v;
-%             obj.y_u = y_u;
-%             obj.y_v = y_v;
-
-            obj.m = m;
-            obj.h = [h_u h_v];
-            obj.order = order;
-            obj.grid = g;
-
-
-        end
-
-        
-        function [D ]= d_fun(obj,t)
-                        % Metric derivatives
-            ti = parametrization.Ti.points(obj.p.p1(t),obj.p.p2(t),obj.p.p3,obj.p.p4);
-            ti_tau = parametrization.Ti.points(obj.p_tau.p1(t),obj.p_tau.p2(t),obj.p_tau.p3,obj.p_tau.p4);
-            
-            coords = parametrization.ti.map();
-            coords_tau = parametrization.ti_tau.map();
-            x = coords(:,1);
-            y = coords(:,2);
-
-            x_tau = coords_tau(:,1);
-            y_tau = coords_tau(:,2); 
-            
-            x_u = obj.Du*x;
-            x_v = obj.Dv*x;
-            y_u = obj.Du*y;
-            y_v = obj.Dv*y;
-
-            J = x_u.*y_v - x_v.*y_u;
-            a11 =  1./J.* (x_v.^2  + y_v.^2);
-            a12 = -1./J .* (x_u.*x_v + y_u.*y_v);
-            a22 =  1./J .* (x_u.^2  + y_u.^2);
-            lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2));
-
-            % Assemble full operators
-            L_12 = spdiags(a12, 0, m_tot, m_tot);
-            Duv = obj.Du*L_12*obj.Dv;
-            Dvu = obj.Dv*L_12*obj.Du;
-
-            Duu = sparse(m_tot);
-            Dvv = sparse(m_tot);
-            ind = grid.funcToMatrix(g, 1:m_tot);
-
-            for i = 1:m_v
-                D = D2_u(a11(ind(:,i)));
-                p = ind(:,i);
-                Duu(p,p) = D;
-            end
-
-            for i = 1:m_u
-                D = D2_v(a22(ind(i,:)));
-                p = ind(i,:);
-                Dvv(p,p) = D;
-            end
-         
-
-            J = spdiags(J, 0, m_tot, m_tot);
-            Ji = spdiags(1./J, 0, m_tot, m_tot);
-            obj.g_1 = x_tau.*y_v-y_tau.*x_v;
-            obj.g_2 = -x_tau.*y_u + y_tau.*x_u;
-            
-            %Add the flux splitting
-            D = Ji*(obj.g_1*obj.Du + obj.g_2*obj.Dv + 1i*obj.c^2*(Duu + Duv + Dvu + Dvv));
-            
-%             obj.gamm_u = h_u*ops_u.borrowing.M.d1;
-%             obj.gamm_v = h_v*ops_v.borrowing.M.d1;
-            
-        end
-
-        % Closure functions return the opertors applied to the own doamin to close the boundary
-        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
-        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
-        %       type                is a string specifying the type of boundary condition if there are several.
-        %       data                is a function returning the data that should be applied at the boundary.
-        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
-        %       neighbour_boundary  is a string specifying which boundary to interface to.
-        function [closure, penalty] = boundary_condition(obj, boundary, parameter)
-            default_arg('type','neumann');
-            default_arg('parameter', []);
-
-                    % v denotes the solution in the neighbour domain
-                    tuning = 1.2;
-                    % tuning = 20.2;
-                    [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g] = obj.get_boundary_ops(boundary);
-
-                    a_n = spdiag(coeff_n);
-                    a_t = spdiag(coeff_t);
-
-                    F = (s * a_n * d_n' + s * a_t*d_t')';
-
-                    u = obj;
-
-                    b1 = gamm*u.lambda./u.a11.^2;
-                    b2 = gamm*u.lambda./u.a22.^2;
-
-                    tau1  = -1./b1 - 1./b2;
-                    tau1 = tuning * spdiag(tau1);
-                    sig1 = 1;
-                    
-                    a = e'*g;
-                    tau2 =  (-1*s*a - abs(a))/4;
-
-                    penalty_parameter_1 = halfnorm_inv_n*(tau1 + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e;
-                    penalty_parameter_2 = halfnorm_inv_n(tau2)*e;
-
-                    closure = obj.Ji*obj.c^2 * penalty_parameter_1*e' +obj.Ji* penalty_parameter_2*e';
-                    penalty = -obj.Ji*obj.c^2 * penalty_parameter_1;
-                
-        end
-
-        function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I, scale_factor,g] = get_boundary_ops(obj, boundary)
-
-            % gridMatrix = zeros(obj.m(2),obj.m(1));
-            % gridMatrix(:) = 1:numel(gridMatrix);
-
-            ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m));
-
-            switch boundary
-                case 'w'
-                    e = obj.e_w;
-                    d_n = obj.du_w;
-                    d_t = obj.dv_w;
-                    s = -1;
-
-                    I = ind(1,:);
-                    coeff_n = obj.a11(I);
-                    coeff_t = obj.a12(I);
-                    scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2);
-                case 'e'
-                    e = obj.e_e;
-                    d_n = obj.du_e;
-                    d_t = obj.dv_e;
-                    s = 1;
-
-                    I = ind(end,:);
-                    coeff_n = obj.a11(I);
-                    coeff_t = obj.a12(I);
-                    scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2);
-                case 's'
-                    e = obj.e_s;
-                    d_n = obj.dv_s;
-                    d_t = obj.du_s;
-                    s = -1;
-
-                    I = ind(:,1)';
-                    coeff_n = obj.a22(I);
-                    coeff_t = obj.a12(I);
-                    scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2);
-                case 'n'
-                    e = obj.e_n;
-                    d_n = obj.dv_n;
-                    d_t = obj.du_n;
-                    s = 1;
-
-                    I = ind(:,end)';
-                    coeff_n = obj.a22(I);
-                    coeff_t = obj.a12(I);
-                    scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2);
-                otherwise
-                    error('No such boundary: boundary = %s',boundary);
-            end
-
-            switch boundary
-                case {'w','e'}
-                    halfnorm_inv_n = obj.Hiu;
-                    halfnorm_inv_t = obj.Hiv;
-                    halfnorm_t = obj.Hv;
-                    gamm = obj.gamm_u;
-                    g=obj.g_1;
-                case {'s','n'}
-                    halfnorm_inv_n = obj.Hiv;
-                    halfnorm_inv_t = obj.Hiu;
-                    halfnorm_t = obj.Hu;
-                    gamm = obj.gamm_v;
-                    g=obj.g_2;
-            end
-        end
-
-        function N = size(obj)
-            N = prod(obj.m);
-        end
-
-
-    end
-end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Schrodinger2dCurve.m	Fri Feb 10 14:29:53 2017 +0100
@@ -0,0 +1,276 @@
+classdef Schrodinger2dCurve < scheme.Scheme
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        xm, ym
+
+        order % Order accuracy for the approximation
+
+        D % non-stabalized scheme operator
+        M % Derivative norm
+        H % Discrete norm
+        Hi
+        H_u, H_v % Norms in the x and y directions
+        Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
+        Hi_u, Hi_v
+        Hiu, Hiv
+        D1_v, D1_u
+        D2_v, D2_u
+        Du, Dv
+        
+ 
+        e_w, e_e, e_s, e_n
+        du_w, dv_w
+        du_e, dv_e
+        du_s, dv_s
+        du_n, dv_n
+        g_1, g_2
+        c
+        a11, a12, a22
+        m_tot, m_u, m_v
+        p,p_tau
+        Ji
+    end
+
+    methods
+        function obj = Schrodinger2dCurve(g ,order, opSet,p,p_tau)
+            default_arg('opSet',@sbp.D2Variable);
+            default_arg('c', 1);
+
+            obj.p=p;
+            obj.p_tau=p_tau;
+            obj.c=1;
+            
+            m = g.size();
+            obj.m_u = m(1);
+            obj.m_v = m(2);
+            obj.m_tot = g.N();
+
+            h = g.scaling();
+            h_u = h(1);
+            h_v = h(2);
+
+            % Operators
+            ops_u = opSet(obj.m_u, {0, 1}, order);
+            ops_v = opSet(obj.m_v, {0, 1}, order);
+
+            I_u = speye(obj.m_u);
+            I_v = speye(obj.m_v);
+
+            obj.D1_u = ops_u.D1;
+            obj.D2_u = ops_u.D2;
+            
+            H_u =  ops_u.H;
+            Hi_u = ops_u.HI;
+            e_l_u = ops_u.e_l;
+            e_r_u = ops_u.e_r;
+            d1_l_u = ops_u.d1_l;
+            d1_r_u = ops_u.d1_r;
+
+            obj.D1_v = ops_v.D1;
+            obj.D2_v = ops_v.D2;
+            H_v =  ops_v.H;
+            Hi_v = ops_v.HI;
+            e_l_v = ops_v.e_l;
+            e_r_v = ops_v.e_r;
+            d1_l_v = ops_v.d1_l;
+            d1_r_v = ops_v.d1_r;
+
+            obj.Du = kr(obj.D1_u,I_v);
+            obj.Dv = kr(I_u,obj.D1_v);
+
+            obj.H = kr(H_u,H_v);
+            obj.Hi = kr(Hi_u,Hi_v);
+            obj.Hu  = kr(H_u,I_v);
+            obj.Hv  = kr(I_u,H_v);
+            obj.Hiu = kr(Hi_u,I_v);
+            obj.Hiv = kr(I_u,Hi_v);
+
+            obj.e_w  = kr(e_l_u,I_v);
+            obj.e_e  = kr(e_r_u,I_v);
+            obj.e_s  = kr(I_u,e_l_v);
+            obj.e_n  = kr(I_u,e_r_v);
+            obj.du_w = kr(d1_l_u,I_v);
+            obj.dv_w = (obj.e_w'*obj.Dv)';
+            obj.du_e = kr(d1_r_u,I_v);
+            obj.dv_e = (obj.e_e'*obj.Dv)';
+            obj.du_s = (obj.e_s'*obj.Du)';
+            obj.dv_s = kr(I_u,d1_l_v);
+            obj.du_n = (obj.e_n'*obj.Du)';
+            obj.dv_n = kr(I_u,d1_r_v);
+
+%             obj.x_u = x_u;
+%             obj.x_v = x_v;
+%             obj.y_u = y_u;
+%             obj.y_v = y_v;
+
+            obj.m = m;
+            obj.h = [h_u h_v];
+            obj.order = order;
+            obj.grid = g;
+
+
+        end
+
+        
+        function [D ]= d_fun(obj,t)
+                        % Metric derivatives
+            ti = parametrization.Ti.points(obj.p.p1(t),obj.p.p2(t),obj.p.p3(t),obj.p.p4(t));
+            ti_tau = parametrization.Ti.points(obj.p_tau.p1(t),obj.p_tau.p2(t),obj.p_tau.p3(t),obj.p_tau.p4(t));
+            
+            lcoords=points(obj.grid);
+            [obj.xm,obj.ym]= ti.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2));
+            [x_tau,y_tau]= ti_tau.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2));
+            x = reshape(obj.xm,obj.m_tot,1);
+            y = reshape(obj.ym,obj.m_tot,1);
+
+            x_tau = reshape(x_tau,obj.m_tot,1);
+            y_tau = reshape(y_tau,obj.m_tot,1); 
+            
+            x_u = obj.Du*x;
+            x_v = obj.Dv*x;
+            y_u = obj.Du*y;
+            y_v = obj.Dv*y;
+
+            J = x_u.*y_v - x_v.*y_u;
+            a11 =  1./J.* (x_v.^2  + y_v.^2);
+            a12 = -1./J .* (x_u.*x_v + y_u.*y_v);
+            a22 =  1./J .* (x_u.^2  + y_u.^2);
+          
+            obj.a11=a11;
+            obj.a12=a12;
+            obj.a22=a22;
+            
+            % Assemble full operators
+            L_12 = spdiags(a12, 0, obj.m_tot, obj.m_tot);
+            Duv = obj.Du*L_12*obj.Dv;
+            Dvu = obj.Dv*L_12*obj.Du;
+
+            Duu = sparse(obj.m_tot);
+            Dvv = sparse(obj.m_tot);
+            ind = grid.funcToMatrix(obj.grid, 1:obj.m_tot);
+
+
+            for i = 1:obj.m_v
+                D = obj.D2_u(a11(ind(:,i)));
+                p = ind(:,i);
+                Duu(p,p) = D;
+            end
+
+            for i = 1:obj.m_u
+                D = obj.D2_v(a22(ind(i,:)));
+                p = ind(i,:);
+                Dvv(p,p) = D;
+            end
+         
+            Ji = spdiags(1./J, 0, obj.m_tot, obj.m_tot);
+            obj.Ji=Ji;
+            obj.g_1 = x_tau.*y_v-y_tau.*x_v;
+            obj.g_2 = -x_tau.*y_u + y_tau.*x_u;
+            
+            %Add the flux splitting
+            D = Ji*(obj.g_1.*obj.Du + obj.g_2.*obj.Dv + 1i*obj.c^2*(Duu + Duv + Dvu + Dvv)); %% g_1' och g_2'?
+            
+%             obj.gamm_u = h_u*ops_u.borrowing.M.d1;
+%             obj.gamm_v = h_v*ops_v.borrowing.M.d1;
+            
+        end
+
+        % Closure functions return the opertors applied to the own doamin to close the boundary
+        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary)
+                    [e, d_n, d_t, coeff_t, s, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g] = obj.get_boundary_ops(boundary);
+                 
+                    a_t = spdiag(coeff_t);
+                    F = (s  * d_n' + s * a_t*d_t')';
+                    tau1  = 1;       
+                    a = spdiag(g);
+                    tau2 =  (-1*s*a - abs(a))/4;
+
+                    penalty_parameter_1 = 1*1i*halfnorm_inv_n*halfnorm_inv_t*e*F'*halfnorm_t*e;
+                    penalty_parameter_2 = halfnorm_inv_n*e*tau2;
+
+                    closure = obj.Ji*obj.c^2 * penalty_parameter_1*e' +obj.Ji* penalty_parameter_2*e';
+                   % penalty = -obj.Ji*obj.c^2 * penalty_parameter_2;
+                   penalty=0;
+                
+        end
+        
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+        end
+
+        function [e, d_n, d_t, coeff_t, s,  halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g, I] = get_boundary_ops(obj, boundary)
+
+            % gridMatrix = zeros(obj.m(2),obj.m(1));
+            % gridMatrix(:) = 1:numel(gridMatrix);
+
+            ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m));
+
+            switch boundary
+                case 'w'
+                    e = obj.e_w;
+                    d_n = obj.du_w;
+                    d_t = obj.dv_w;
+                    s = -1;
+
+                    I = ind(1,:);
+                    coeff_t = obj.a12(I);
+                    g=obj.g_1(I);
+                case 'e'
+                    e = obj.e_e;
+                    d_n = obj.du_e;
+                    d_t = obj.dv_e;
+                    s = 1;
+
+                    I = ind(end,:);
+                    coeff_t = obj.a12(I);
+                    g=obj.g_1(I);
+                case 's'
+                    e = obj.e_s;
+                    d_n = obj.dv_s;
+                    d_t = obj.du_s;
+                    s = -1;
+
+                    I = ind(:,1)';
+                    coeff_t = obj.a12(I);
+                    g=obj.g_2(I);
+                case 'n'
+                    e = obj.e_n;
+                    d_n = obj.dv_n;
+                    d_t = obj.du_n;
+                    s = 1;
+
+                    I = ind(:,end)';
+                    coeff_t = obj.a12(I);
+                    g=obj.g_2(I);
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch boundary
+                case {'w','e'}
+                    halfnorm_inv_n = obj.Hiu;
+                    halfnorm_inv_t = obj.Hiv;
+                    halfnorm_t = obj.Hv;
+                   
+                case {'s','n'}
+                    halfnorm_inv_n = obj.Hiv;
+                    halfnorm_inv_t = obj.Hiu;
+                    halfnorm_t = obj.Hu;
+            end
+        end
+
+        function N = size(obj)
+            N = prod(obj.m);
+        end
+
+
+    end
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Schrodinger2dCurve.m~	Fri Feb 10 14:29:53 2017 +0100
@@ -0,0 +1,276 @@
+classdef Schrodinger2dCurve < scheme.Scheme
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        xm, ym
+
+        order % Order accuracy for the approximation
+
+        D % non-stabalized scheme operator
+        M % Derivative norm
+        H % Discrete norm
+        Hi
+        H_u, H_v % Norms in the x and y directions
+        Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
+        Hi_u, Hi_v
+        Hiu, Hiv
+        D1_v, D1_u
+        D2_v, D2_u
+        Du, Dv
+        
+ 
+        e_w, e_e, e_s, e_n
+        du_w, dv_w
+        du_e, dv_e
+        du_s, dv_s
+        du_n, dv_n
+        g_1, g_2
+        c
+        a11, a12, a22
+        m_tot, m_u, m_v
+        p,p_tau
+        Ji
+    end
+
+    methods
+        function obj = Schrodinger2dCurve(g ,order, opSet,p,p_tau)
+            default_arg('opSet',@sbp.D2Variable);
+            default_arg('c', 1);
+
+            obj.p=p;
+            obj.p_tau=p_tau;
+            obj.c=1;
+            
+            m = g.size();
+            obj.m_u = m(1);
+            obj.m_v = m(2);
+            obj.m_tot = g.N();
+
+            h = g.scaling();
+            h_u = h(1);
+            h_v = h(2);
+
+            % Operators
+            ops_u = opSet(obj.m_u, {0, 1}, order);
+            ops_v = opSet(obj.m_v, {0, 1}, order);
+
+            I_u = speye(obj.m_u);
+            I_v = speye(obj.m_v);
+
+            obj.D1_u = ops_u.D1;
+            obj.D2_u = ops_u.D2;
+            
+            H_u =  ops_u.H;
+            Hi_u = ops_u.HI;
+            e_l_u = ops_u.e_l;
+            e_r_u = ops_u.e_r;
+            d1_l_u = ops_u.d1_l;
+            d1_r_u = ops_u.d1_r;
+
+            obj.D1_v = ops_v.D1;
+            obj.D2_v = ops_v.D2;
+            H_v =  ops_v.H;
+            Hi_v = ops_v.HI;
+            e_l_v = ops_v.e_l;
+            e_r_v = ops_v.e_r;
+            d1_l_v = ops_v.d1_l;
+            d1_r_v = ops_v.d1_r;
+
+            obj.Du = kr(obj.D1_u,I_v);
+            obj.Dv = kr(I_u,obj.D1_v);
+
+            obj.H = kr(H_u,H_v);
+            obj.Hi = kr(Hi_u,Hi_v);
+            obj.Hu  = kr(H_u,I_v);
+            obj.Hv  = kr(I_u,H_v);
+            obj.Hiu = kr(Hi_u,I_v);
+            obj.Hiv = kr(I_u,Hi_v);
+
+            obj.e_w  = kr(e_l_u,I_v);
+            obj.e_e  = kr(e_r_u,I_v);
+            obj.e_s  = kr(I_u,e_l_v);
+            obj.e_n  = kr(I_u,e_r_v);
+            obj.du_w = kr(d1_l_u,I_v);
+            obj.dv_w = (obj.e_w'*obj.Dv)';
+            obj.du_e = kr(d1_r_u,I_v);
+            obj.dv_e = (obj.e_e'*obj.Dv)';
+            obj.du_s = (obj.e_s'*obj.Du)';
+            obj.dv_s = kr(I_u,d1_l_v);
+            obj.du_n = (obj.e_n'*obj.Du)';
+            obj.dv_n = kr(I_u,d1_r_v);
+
+%             obj.x_u = x_u;
+%             obj.x_v = x_v;
+%             obj.y_u = y_u;
+%             obj.y_v = y_v;
+
+            obj.m = m;
+            obj.h = [h_u h_v];
+            obj.order = order;
+            obj.grid = g;
+
+
+        end
+
+        
+        function [D ]= d_fun(obj,t)
+                        % Metric derivatives
+            ti = parametrization.Ti.points(obj.p.p1(t),obj.p.p2(t),obj.p.p3(t),obj.p.p4(t));
+            ti_tau = parametrization.Ti.points(obj.p_tau.p1(t),obj.p_tau.p2(t),obj.p_tau.p3(t),obj.p_tau.p4(t));
+            
+            lcoords=points(obj.grid);
+            [obj.xm,obj.ym]= ti.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2));
+            [x_tau,y_tau]= ti_tau.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2));
+            x = reshape(obj.xm,obj.m_tot,1);
+            y = reshape(obj.ym,obj.m_tot,1);
+
+            x_tau = reshape(x_tau,obj.m_tot,1);
+            y_tau = reshape(y_tau,obj.m_tot,1); 
+            
+            x_u = obj.Du*x;
+            x_v = obj.Dv*x;
+            y_u = obj.Du*y;
+            y_v = obj.Dv*y;
+
+            J = x_u.*y_v - x_v.*y_u;
+            a11 =  1./J.* (x_v.^2  + y_v.^2);
+            a12 = -1./J .* (x_u.*x_v + y_u.*y_v);
+            a22 =  1./J .* (x_u.^2  + y_u.^2);
+          
+            obj.a11=a11;
+            obj.a12=a12;
+            obj.a22=a22;
+            
+            % Assemble full operators
+            L_12 = spdiags(a12, 0, obj.m_tot, obj.m_tot);
+            Duv = obj.Du*L_12*obj.Dv;
+            Dvu = obj.Dv*L_12*obj.Du;
+
+            Duu = sparse(obj.m_tot);
+            Dvv = sparse(obj.m_tot);
+            ind = grid.funcToMatrix(obj.grid, 1:obj.m_tot);
+
+
+            for i = 1:obj.m_v
+                D = obj.D2_u(a11(ind(:,i)));
+                p = ind(:,i);
+                Duu(p,p) = D;
+            end
+
+            for i = 1:obj.m_u
+                D = obj.D2_v(a22(ind(i,:)));
+                p = ind(i,:);
+                Dvv(p,p) = D;
+            end
+         
+            Ji = spdiags(1./J, 0, obj.m_tot, obj.m_tot);
+            obj.Ji=Ji;
+            obj.g_1 = x_tau.*y_v-y_tau.*x_v;
+            obj.g_2 = -x_tau.*y_u + y_tau.*x_u;
+            
+            %Add the flux splitting
+            D = Ji*(obj.g_1.*obj.Du + obj.g_2.*obj.Dv + 1i*obj.c^2*(Duu + Duv + Dvu + Dvv)); %% g_1' och g_2'?
+            
+%             obj.gamm_u = h_u*ops_u.borrowing.M.d1;
+%             obj.gamm_v = h_v*ops_v.borrowing.M.d1;
+            
+        end
+
+        % Closure functions return the opertors applied to the own doamin to close the boundary
+        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary)
+                    [e, d_n, d_t, coeff_t, s, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g] = obj.get_boundary_ops(boundary);
+                 
+                    a_t = spdiag(coeff_t);
+                    F = (s  * d_n' + s * a_t*d_t')';
+                    tau1  = 1;       
+                    a = spdiag(g);
+                    tau2 =  (-1*s*a - abs(a))/4;
+
+                    penalty_parameter_1 = 1i*halfnorm_inv_n*halfnorm_inv_t*e*e'*F*halfnorm_t;
+                    penalty_parameter_2 = halfnorm_inv_n*e*tau2;
+
+                    closure = obj.Ji*obj.c^2 * penalty_parameter_1*e' +obj.Ji* penalty_parameter_2*e';
+                   % penalty = -obj.Ji*obj.c^2 * penalty_parameter_2;
+                   penalty=0;
+                
+        end
+        
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+        end
+
+        function [e, d_n, d_t, coeff_t, s,  halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g, I] = get_boundary_ops(obj, boundary)
+
+            % gridMatrix = zeros(obj.m(2),obj.m(1));
+            % gridMatrix(:) = 1:numel(gridMatrix);
+
+            ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m));
+
+            switch boundary
+                case 'w'
+                    e = obj.e_w;
+                    d_n = obj.du_w;
+                    d_t = obj.dv_w;
+                    s = -1;
+
+                    I = ind(1,:);
+                    coeff_t = obj.a12(I);
+                    g=obj.g_1(I);
+                case 'e'
+                    e = obj.e_e;
+                    d_n = obj.du_e;
+                    d_t = obj.dv_e;
+                    s = 1;
+
+                    I = ind(end,:);
+                    coeff_t = obj.a12(I);
+                    g=obj.g_1(I);
+                case 's'
+                    e = obj.e_s;
+                    d_n = obj.dv_s;
+                    d_t = obj.du_s;
+                    s = -1;
+
+                    I = ind(:,1)';
+                    coeff_t = obj.a12(I);
+                    g=obj.g_2(I);
+                case 'n'
+                    e = obj.e_n;
+                    d_n = obj.dv_n;
+                    d_t = obj.du_n;
+                    s = 1;
+
+                    I = ind(:,end)';
+                    coeff_t = obj.a12(I);
+                    g=obj.g_2(I);
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch boundary
+                case {'w','e'}
+                    halfnorm_inv_n = obj.Hiu;
+                    halfnorm_inv_t = obj.Hiv;
+                    halfnorm_t = obj.Hv;
+                   
+                case {'s','n'}
+                    halfnorm_inv_n = obj.Hiv;
+                    halfnorm_inv_t = obj.Hiu;
+                    halfnorm_t = obj.Hu;
+            end
+        end
+
+        function N = size(obj)
+            N = prod(obj.m);
+        end
+
+
+    end
+end
\ No newline at end of file