changeset 854:18162a0a5bb5 feature/burgers1d

Merged branch with default for latest change set
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 12 Oct 2018 08:50:25 +0200
parents cda996e64925 (diff) 006defd0247b (current diff)
children a6f34de60044 037f203b9bf5
files
diffstat 18 files changed, 490 insertions(+), 165 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/dissipationOperator.m	Fri Oct 12 08:50:25 2018 +0200
@@ -0,0 +1,67 @@
+%%  Function that constructs artificial dissipation operators using undivided differences
+function D = dissipationOperator(m, order, Hinv, scaling)
+    % TBD: Add or remove D_2 and Dp/Dm?
+    % d2=[1 2 1];
+    % D_2=(diag(ones(m-1,1),-1)-2*diag(ones(m,1),0)+ ...
+    % diag(ones(m-1,1),1));
+    % D_2(1,1:3)=[d2];D_2(m,m-2:m)=[d2];
+    % %Dm
+    % DD_m=(diag(ones(m-1,1),+1)-diag(ones(m,1),0));
+    % DD_m(m,m-1:m)=[-1 1];
+    % %Dp
+    % DD_p=(-diag(ones(m-1,1),-1)+diag(ones(m,1),0));
+    % DD_p(1,1:2)=[-1 1];
+
+    switch order
+        case 1
+            DD_1=(diag(ones(m-1,1),+1)-diag(ones(m,1),0));
+            DD_1(m,m-1:m)=[-1 1];
+            D = DD_2'*DD_2;
+        case 2
+            dd2=0*[1 -2 1];
+            DD_2=(diag(ones(m-1,1),-1)-2*diag(ones(m,1),0)+ ...
+            	  diag(ones(m-1,1),1));
+            DD_2(1,1:3)=[dd2];DD_2(m,m-2:m)=[dd2];
+            D = DD_2'*DD_2;
+        case 3
+            d3=0*[-1 3 -3 1];
+            DD_3=(-diag(ones(m-2,1),-2)+3*diag(ones(m-1,1),-1)-3*diag(ones(m,1),0)+ ...
+                  diag(ones(m-1,1),1));
+            DD_3(1:2,1:4)=[d3;d3];
+            DD_3(m,m-3:m)=[d3];
+            D = DD_3'*DD_3;
+        case 4
+            default_arg('scaling', 1/12);
+            d4=0*[1 -4 6 -4 1];
+            DD_4=(diag(ones(m-2,1),2)-4*diag(ones(m-1,1),1)+6*diag(ones(m,1),0)-4*diag(ones(m-1,1),-1)+diag(ones(m-2,1),-2));
+            DD_4(1:2,1:5)=[d4;d4];DD_4(m-1:m,m-4:m)=[d4;d4];
+            D = DD_4'*DD_4;
+        case 5
+            d5=0*[-1 5 -10 10 -5 1];
+            DD_5=(-diag(ones(m-3,1),-3)+5*diag(ones(m-2,1),-2)-10*diag(ones(m-1,1),-1)+10*diag(ones(m,1),0)-5*diag(ones(m-1,1),1)+diag(ones(m-2,1),2));
+            DD_5(1:3,1:6)=[d5;d5;d5];
+            DD_5(m-1:m,m-5:m)=[d5;d5];
+            D = DD_5'*DD_5; 
+        case 6
+            default_arg('scaling', 1/60);
+            d6=0*[1 -6 15 -20 15 -6 1];
+            DD_6=(diag(ones(m-3,1),3)-6*diag(ones(m-2,1),2)+15*diag(ones(m-1,1),1)-20*diag(ones(m,1),0)+15*diag(ones(m-1,1),-1)-6*diag(ones(m-2,1),-2)+diag(ones(m-3,1),-3));
+            DD_6(1:3,1:7)=[d6;d6;d6];DD_6(m-2:m,m-6:m)=[d6;d6;d6];
+            D = DD_6'*DD_6;
+        case 7
+            d7=0*[-1 7 -21 35 -35 21 -7 1]; 
+            DD_7=(-diag(ones(m-4,1),-4)+7*diag(ones(m-3,1),-3)-21*diag(ones(m-2,1),-2)+35*diag(ones(m-1,1),-1)-35*diag(ones(m,1),0)+21*diag(ones(m-1,1),1)-7*diag(ones(m-2,1),2)+diag(ones(m-3,1),3));
+            DD_7(1:4,1:8)=[d7;d7;d7;d7];
+            DD_7(m-2:m,m-7:m)=[d7;d7;d7];
+            D = DD_7'*DD_7;
+        case 9
+            d9=0*[-1 9 -36 84 -126 126 -84 36 -9 1]; 
+            DD_9=(-diag(ones(m-5,1),-5)+9*diag(ones(m-4,1),-4)-36*diag(ones(m-3,1),-3)+84*diag(ones(m-2,1),-2)-126*diag(ones(m-1,1),-1)+126*diag(ones(m,1),0)-84*diag(ones(m-1,1),1)+36*diag(ones(m-2,1),2)-9*diag(ones(m-3,1),3)+diag(ones(m-4,1),4));
+            DD_9(1:5,1:10)=[d9;d9;d9;d9;d9];
+            DD_9(m-3:m,m-9:m)=[d9;d9;d9;d9];
+            D = DD_9'*DD_9;
+        otherwise
+            error('Order not yet supported', order);
+    end
+    D = scaling*sparse(Hinv*D);
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Burgers1D.m	Fri Oct 12 08:50:25 2018 +0200
@@ -0,0 +1,148 @@
+classdef Burgers1D < scheme.Scheme
+    properties
+        grid % Physical grid
+        order % Order accuracy for the approximation
+        
+        params
+
+        D % Non-stabalized scheme operator
+        H % Discrete norm
+        Hi % Norm inverse
+        e_l
+        e_r
+        d_l
+        d_r
+    end
+
+    methods
+        function obj = Burgers1D(grid, pde_form, operator_type, order, dissipation, params)
+            assert(grid.D == 1);
+            assert(grid.size() == length(params.eps));
+            m = grid.size();
+            lim = grid.lim{1}; % Ugly, and only applicable for cartesian grids.
+            switch operator_type
+                case 'narrow'
+                    ops = sbp.D4Variable(m, lim, order);
+                    D1 = ops.D1;
+                    D2 = ops.D2;
+                    if (strcmp(dissipation,'on'))
+                        DissipationOp = -1*sbp.dissipationOperator(m, order, ops.HI);
+                    end
+                    d_l = ops.d1_l';
+                    d_r = ops.d1_r';
+                case 'upwind-'
+                    ops = sbp.D1Upwind(m, lim, order);
+                    D1 = (ops.Dp + ops.Dm)/2;
+                    D2 = @(eps) ops.Dp*spdiag(eps)*ops.Dm;
+                    if (strcmp(dissipation,'on'))
+                        DissipationOp = (ops.Dp-ops.Dm)/2;
+                    end
+                    d_l = ops.e_l'*ops.Dm;
+                    d_r = ops.e_r'*ops.Dm;
+                case 'upwind+'
+                    ops = sbp.D1Upwind(m, lim, order);
+                    D1 = (ops.Dp + ops.Dm)/2;
+                    D2 = @(eps) ops.Dm*spdiag(eps)*ops.Dp;
+                    if (strcmp(dissipation,'on'))
+                        DissipationOp = (ops.Dp-ops.Dm)/2;
+                    end
+                    d_l = ops.e_l'*ops.Dp;
+                    d_r = ops.e_r'*ops.Dp;
+                case 'upwind+-'
+                    ops = sbp.D1Upwind(m, lim, order);
+                    D1 = (ops.Dp + ops.Dm)/2;
+                    D2 = @(eps) (ops.Dp*spdiag(eps)*ops.Dm + ops.Dm*spdiag(eps)*ops.Dp)/2;
+                    if (strcmp(dissipation,'on'))
+                        DissipationOp = (ops.Dp-ops.Dm)/2;
+                    end
+                    d_l = ops.e_l'*D1;
+                    d_r = ops.e_r'*D1;
+                otherwise
+                    error('Other operator types not yet supported', operator_type);
+            end
+
+            switch pde_form
+                case 'skew-symmetric'
+                    if (strcmp(dissipation,'on'))
+                        D = @(v, viscosity) - 1/3*D1*v.^2 + (-1/3*v.*D1 + D2(params.eps + viscosity) + max(abs(v))*DissipationOp)*v;
+                    else
+                        D = @(v, viscosity) - 1/3*D1*v.^2 + (-1/3*v.*D1 + D2(params.eps + viscosity))*v;
+                    end
+                case 'conservative'
+                    if (strcmp(dissipation,'on'))
+                        D = @(v, viscosity) -1/2*D1*v.^2 + (D2(params.eps + viscosity) + max(abs(v))*DissipationOp)*v;
+                    else
+                        D = @(v, viscosity) -1/2*D1*v.^2 + D2(params.eps + viscosity)*v;
+                    end
+                otherwise
+                    error('Not supported', pde_form);
+            end
+
+            obj.grid = grid;
+            obj.order = order;
+            obj.params = params;
+
+            obj.D = D;
+            obj.H =  ops.H;
+            obj.Hi = ops.HI;
+            obj.e_l = ops.e_l;
+            obj.e_r = ops.e_r;
+            obj.d_l =  d_l;
+            obj.d_r =  d_r;
+        end
+
+        % Closure functions return the operators applied to the own doamin to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other domain.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        function [closure, penalty] = boundary_condition(obj,boundary,type,data)
+            default_arg('type','robin');
+            default_arg('data',0);
+            [e, d, i_b, s] = obj.get_boundary_ops(boundary);
+            switch type
+                % Stable robin-like boundary conditions ((u+-abs(u))*u/3 - eps*u_x)) with +- at left/right boundary
+                case {'R','robin'}
+                    p = s*obj.Hi*e;
+                    closure = @(v, viscosity) p*(((v(i_b)-s*abs(v(i_b)))/3)*(v(i_b)) - ((obj.params.eps(i_b) + viscosity(i_b))*d*v));
+                    switch class(data)
+                        case 'double'
+                            penalty = s*p*data;
+                        case 'function_handle'
+                            penalty = @(t) s*p*data(t);
+                        otherwise
+                            error('Wierd data argument!')
+                    end
+                otherwise
+                    error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        % Ruturns the boundary ops, boundary index and sign for the boundary specified by the string boundary.
+        % The right boundary is considered the positive boundary
+        function [e, d, i_b, s] = get_boundary_ops(obj,boundary)
+            switch boundary
+                case 'l'
+                    e = obj.e_l;
+                    d = obj.d_l;
+                    i_b = 1;
+                    s = -1;
+                case 'r'
+                    e = obj.e_r;
+                    d = obj.d_r;
+                    i_b = length(e);
+                    s = 1;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            error('An interface function does not exist yet');
+        end
+
+        function N = size(obj)
+            N = obj.grid.m;
+        end
+    end
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/+rk/butcherTableau.m	Fri Oct 12 08:50:25 2018 +0200
@@ -0,0 +1,37 @@
+function [s,a,b,c] = butcherTableau(order)
+
+switch order
+  
+    case 3
+        % TVD (Total Variational Diminishing)
+        s = 3;
+        a = zeros(s,s-1);
+        a(2,1) = 1;
+        a(3,1) = 1/4; a(3,2) = 1/4;
+        b = [1/6, 1/6, 2/3];
+        c = [0 1 1/2];
+    case 4
+        % Standard RK4
+        s = 4;
+        a = zeros(s,s-1);
+        a(2,1) = 1/2; 
+        a(3,1) = 0; a(3,2) = 1/2;
+        a(4,1) = 0; a(4,2) = 0; a(4,3) = 1;
+        b = [1/6 1/3 1/3 1/6];
+        c = [0, 1/2, 1/2, 1];
+    case 6
+        % Runge-Kutta 6 from Alshina07 
+        s = 7;
+        a = zeros(s,s-1);
+        a(2,1) = 4/7; 
+        a(3,1) = 115/112; a(3,2) = -5/16;
+        a(4,1) = 589/630; a(4,2) = 5/18; a(4,3) = -16/45;
+        a(5,1) = 229/1200 - 29/6000*sqrt(5); a(5,2) = 119/240 - 187/1200*sqrt(5); a(5,3) = -14/75 + 34/375*sqrt(5); a(5,4) = -3/100*sqrt(5);
+        a(6,1) = 71/2400 - 587/12000*sqrt(5); a(6,2) = 187/480 - 391/2400*sqrt(5); a(6,3) = -38/75 + 26/375*sqrt(5); a(6,4) = 27/80 - 3/400*sqrt(5); a(6,5) = (1+sqrt(5))/4;
+        a(7,1) = -49/480 + 43/160*sqrt(5); a(7,2) = -425/96 + 51/32*sqrt(5); a(7,3) = 52/15 - 4/5*sqrt(5); a(7,4) = -27/16 + 3/16*sqrt(5); a(7,5) = 5/4 - 3/4*sqrt(5); a(7,6) = 5/2 - 1/2*sqrt(5);
+        b = [1/12 0 0 0 5/12 5/12 1/12];
+        c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1];
+    otherwise
+        error('That Runge-Kutta order is not implemented', order)
+        
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/+rk/get_rk4_time_step.m	Fri Oct 12 08:50:25 2018 +0200
@@ -0,0 +1,21 @@
+% Calculate the size of the largest time step given the largest evalue for a operator with pure imaginary e.values.
+function k = get_rk4_time_step(lambda,l_type)
+    default_arg('l_type','complex')
+
+    rad = abs(lambda);
+    if strcmp(l_type,'real')
+        % Real eigenvalue
+        % kl > -2.7852
+        k = 2.7852/rad;
+
+    elseif strcmp(l_type,'imag')
+        % Imaginary eigenvalue
+        % |kl| < 2.8284
+        k = 2.8284/rad;
+    elseif strcmp(l_type,'complex')
+        % |kl| < 2.5
+        k = 2.5/rad;
+    else
+        error('l_type must be one of ''real'',''imag'' or ''complex''.')
+    end
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/+rk/rk4_stability.m	Fri Oct 12 08:50:25 2018 +0200
@@ -0,0 +1,58 @@
+function rk_stability()
+    ruku4 = @(z)(abs(1 + z +(1/2)*z.^2 + (1/6)*z.^3 + (1/24)*z.^4));
+    circ  = @(z)(abs(z));
+
+
+    % contour(X,Y,z)
+    ax = [-4 2 -3 3];
+    % hold on
+    fcontour(ruku4,[1,1],[-3, 0.6],[-3.2, 3.2])
+    hold on
+    r = 2.6;
+    fcontour(circ,[r,r],[-3, 0.6],[-3.2, 3.2],'r')
+    hold off
+    % contour(X,Y,z,[1,1],'b')
+    axis(ax)
+    title('4th order Runge-Kutta stability region')
+    xlabel('Re')
+    ylabel('Im')
+    axis equal
+    grid on
+    box on
+    hold off
+    % surf(X,Y,z)
+
+
+    rk4roots()
+end
+
+function fcontour(f,levels,x_lim,y_lim,opt)
+    default_arg('opt','b')
+    x = linspace(x_lim(1),x_lim(2));
+    y = linspace(y_lim(1),y_lim(2));
+    [X,Y] = meshgrid(x,y);
+    mu = X+ 1i*Y;
+
+    z = f(mu);
+
+    contour(X,Y,z,levels,opt)
+
+end
+
+
+function rk4roots()
+    ruku4 = @(z)(abs(1 + z +(1/2)*z.^2 + (1/6)*z.^3 + (1/24)*z.^4));
+    % Roots for real evalues:
+    F = @(x)(abs(ruku4(x))-1);
+    real_x = fzero(F,-3);
+
+    % Roots for imaginary evalues:
+    F = @(x)(abs(ruku4(1i*x))-1);
+    imag_x1 = fzero(F,-3);
+    imag_x2 = fzero(F,3);
+
+
+    fprintf('Real x = %f\n',real_x)
+    fprintf('Imag x = %f\n',imag_x1)
+    fprintf('Imag x = %f\n',imag_x2)
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/+rk/rungekutta.m	Fri Oct 12 08:50:25 2018 +0200
@@ -0,0 +1,20 @@
+% Takes one time step of size dt using the rungekutta method
+% starting from v_0 and where the function F(v,t) gives the
+% time derivatives. coeffs is a struct holding the RK coefficients
+% for the specific method.
+function v = rungekutta(v, t , dt, F, coeffs)
+    % Compute the intermediate stages k
+    k = zeros(length(v), coeffs.s);
+    for i = 1:coeffs.s
+        u = v;
+        for j = 1:i-1
+            u = u + dt*coeffs.a(i,j)*k(:,j);
+        end
+        k(:,i) = F(u,t+coeffs.c(i)*dt);
+    end
+    % Compute the updated solution as a linear combination
+    % of the intermediate stages.
+    for i = 1:coeffs.s
+        v = v + dt*coeffs.b(i)*k(:,i);
+    end
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/+rk/rungekuttaRV.m	Fri Oct 12 08:50:25 2018 +0200
@@ -0,0 +1,30 @@
+% Takes one time step of size dt using the rungekutta method
+% starting from v_0 and where the function F(v,t,RV) gives the
+% time derivatives. coeffs is a struct holding the RK coefficients
+% for the specific method. RV is the residual viscosity which is updated
+% in between the stages and after the updated solution is computed.
+function v = rungekuttaRV(v, t , dt, F, RV, coeffs)
+    % Move one stage outside to avoid branching for updating the
+    % residual inside the loop.
+    k = zeros(length(v), coeffs.s);
+    k(:,1) = F(v,t,RV.getViscosity());
+
+    % Compute the intermediate stages k
+    for i = 2:coeffs.s
+        u = v;
+        for j = 1:i-1
+            u = u + dt*coeffs.a(i,j)*k(:,j);
+        end
+        RV.update(u,v,coeffs.c(i)*dt);
+        k(:,i) = F(u,t+coeffs.c(i)*dt, RV.getViscosity());
+    end
+
+    % Compute the updated solution as a linear combination
+    % of the intermediate stages.
+    u = v;
+    for i = 1:coeffs.s
+        u = u + dt*coeffs.b(i)*k(:,i);
+    end
+    RV.update(u,v,dt);
+    v = u;
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/+rk/rungekutta_4.m	Fri Oct 12 08:50:25 2018 +0200
@@ -0,0 +1,10 @@
+% Takes one time step of size dt using the rungekutta method
+% starting from v_0 and where the function F(v,t) gives the
+% time derivatives.
+function v = rungekutta_4(v, t , dt, F)
+    k1 = F(v         ,t      );
+    k2 = F(v+0.5*dt*k1,t+0.5*dt);
+    k3 = F(v+0.5*dt*k2,t+0.5*dt);
+    k4 = F(v+    dt*k3,t+    dt);
+    v = v + (1/6)*(k1+2*(k2+k3)+k4)*dt;
+end
\ No newline at end of file
--- a/+time/+rk4/get_rk4_time_step.m	Thu Sep 20 11:45:40 2018 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,21 +0,0 @@
-% Calculate the size of the largest time step given the largest evalue for a operator with pure imaginary e.values.
-function k = get_rk4_time_step(lambda,l_type)
-    default_arg('l_type','complex')
-
-    rad = abs(lambda);
-    if strcmp(l_type,'real')
-        % Real eigenvalue
-        % kl > -2.7852
-        k = 2.7852/rad;
-
-    elseif strcmp(l_type,'imag')
-        % Imaginary eigenvalue
-        % |kl| < 2.8284
-        k = 2.8284/rad;
-    elseif strcmp(l_type,'complex')
-        % |kl| < 2.5
-        k = 2.5/rad;
-    else
-        error('l_type must be one of ''real'',''imag'' or ''complex''.')
-    end
-end
\ No newline at end of file
--- a/+time/+rk4/rk4_stability.m	Thu Sep 20 11:45:40 2018 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,58 +0,0 @@
-function rk_stability()
-    ruku4 = @(z)(abs(1 + z +(1/2)*z.^2 + (1/6)*z.^3 + (1/24)*z.^4));
-    circ  = @(z)(abs(z));
-
-
-    % contour(X,Y,z)
-    ax = [-4 2 -3 3];
-    % hold on
-    fcontour(ruku4,[1,1],[-3, 0.6],[-3.2, 3.2])
-    hold on
-    r = 2.6;
-    fcontour(circ,[r,r],[-3, 0.6],[-3.2, 3.2],'r')
-    hold off
-    % contour(X,Y,z,[1,1],'b')
-    axis(ax)
-    title('4th order Runge-Kutta stability region')
-    xlabel('Re')
-    ylabel('Im')
-    axis equal
-    grid on
-    box on
-    hold off
-    % surf(X,Y,z)
-
-
-    rk4roots()
-end
-
-function fcontour(f,levels,x_lim,y_lim,opt)
-    default_arg('opt','b')
-    x = linspace(x_lim(1),x_lim(2));
-    y = linspace(y_lim(1),y_lim(2));
-    [X,Y] = meshgrid(x,y);
-    mu = X+ 1i*Y;
-
-    z = f(mu);
-
-    contour(X,Y,z,levels,opt)
-
-end
-
-
-function rk4roots()
-    ruku4 = @(z)(abs(1 + z +(1/2)*z.^2 + (1/6)*z.^3 + (1/24)*z.^4));
-    % Roots for real evalues:
-    F = @(x)(abs(ruku4(x))-1);
-    real_x = fzero(F,-3);
-
-    % Roots for imaginary evalues:
-    F = @(x)(abs(ruku4(1i*x))-1);
-    imag_x1 = fzero(F,-3);
-    imag_x2 = fzero(F,3);
-
-
-    fprintf('Real x = %f\n',real_x)
-    fprintf('Imag x = %f\n',imag_x1)
-    fprintf('Imag x = %f\n',imag_x2)
-end
\ No newline at end of file
--- a/+time/+rk4/rungekutta_4.m	Thu Sep 20 11:45:40 2018 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,10 +0,0 @@
-% Takes one time step of size k using the rungekutta method
-% starting from v_0 and where the function F(v,t) gives the
-% time derivatives.
-function v = rungekutta_4(v, t , k, F)
-    k1 = F(v         ,t      );
-    k2 = F(v+0.5*k*k1,t+0.5*k);
-    k3 = F(v+0.5*k*k2,t+0.5*k);
-    k4 = F(v+    k*k3,t+    k);
-    v = v + (1/6)*(k1+2*(k2+k3)+k4)*k;
-end
\ No newline at end of file
--- a/+time/+rk4/rungekutta_6.m	Thu Sep 20 11:45:40 2018 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,31 +0,0 @@
-% Takes one time step of size k using the rungekutta method
-% starting from v_0 and where the function F(v,t) gives the
-% time derivatives.
-function v = rungekutta_6(v, t , k, F)
-    s = 7
-    k = zeros(length(v),s)
-    a = zeros(7,6);
-    c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1];
-    b = [1/12, 0, 0, 0, 5/12, 5/12, 1/12];
-    a = [
-        0,                           0,                          0,                       0,                     0,                 0;
-        4/7,                         0,                          0,                       0,                     0,                 0;
-        115/112,                     -5/16,                      0,                       0,                     0,                 0;
-        589/630,                     5/18,                       -16/45,                  0,                     0,                 0;
-        229/1200 - 29/6000*sqrt(5),  119/240 - 187/1200*sqrt(5), -14/75 + 34/375*sqrt(5), -3/100*sqrt(5),        0,                 0;
-        71/2400 - 587/12000*sqrt(5), 187/480 - 391/2400*sqrt(5), -38/75 + 26/375*sqrt(5), 27/80 - 3/400*sqrt(5), (1+sqrt(5))/4,     0;
-        -49/480 + 43/160*sqrt(5),    -425/96 + 51/32*sqrt(5),    52/15 - 4/5*sqrt(5),     -27/16 + 3/16*sqrt(5), 5/4 - 3/4*sqrt(5), 5/2 - 1/2*sqrt(5);
-    ]
-
-    for i = 1:s
-        u = v
-        for j = 1: i-1
-            u = u + h*a(i,j) * k(:,j)
-        end
-        k(:,i) = F(t+c(i)*k,u)
-    end
-
-    for i = 1:s
-        v = v + k*b(i)*k(:,i)
-    end
-end
--- a/+time/Rk4SecondOrderNonlin.m	Thu Sep 20 11:45:40 2018 +0200
+++ b/+time/Rk4SecondOrderNonlin.m	Fri Oct 12 08:50:25 2018 +0200
@@ -61,7 +61,7 @@
         end
 
         function obj = step(obj)
-            obj.w = time.rk4.rungekutta_4(obj.w, obj.t, obj.k, obj.F);
+            obj.w = time.rk.rungekutta_4(obj.w, obj.t, obj.k, obj.F);
             obj.t = obj.t + obj.k;
             obj.n = obj.n + 1;
         end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/Rungekutta.m	Fri Oct 12 08:50:25 2018 +0200
@@ -0,0 +1,46 @@
+classdef Rungekutta < time.Timestepper
+    properties
+        F       % RHS of the ODE
+        k       % Time step
+        t       % Time point
+        v       % Solution vector
+        n       % Time level
+        scheme  % The scheme used for the time stepping, e.g rk4, rk6 etc.
+    end
+
+
+    methods
+        % Timesteps v_t = F(v,t), using RK with specfied order from t = t0 with
+        % timestep k and initial conditions v = v0
+        function obj = Rungekutta(F, k, t0, v0, order)
+            default_arg('order',4);
+            obj.F = F;
+            obj.k = k;
+            obj.t = t0;
+            obj.v = v0;
+            obj.n = 0;
+            % TBD: Order 4 is also implemented in the butcher tableau, but the rungekutta_4.m implementation
+            % might be slightly more efficient. Need to do some profiling before deciding whether or not to keep it.
+            if (order == 4)
+                obj.scheme = @time.rk.rungekutta_4;
+            else
+                % Extract the coefficients for the specified order
+                % used for the RK updates from the Butcher tableua.
+                [s,a,b,c] = time.rk.butcherTableau(order);
+                coeffs = struct('s',s,'a',a,'b',b,'c',c);
+                obj.scheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs);
+            end
+        end
+
+        function [v,t] = getV(obj)
+            v = obj.v;
+            t = obj.t;
+        end
+
+        function obj = step(obj)
+            obj.v = obj.scheme(obj.v, obj.t, obj.k, obj.F);
+            obj.t = obj.t + obj.k;
+            obj.n = obj.n + 1;
+        end
+    end
+end
\ No newline at end of file
--- a/+time/Rungekutta4.m	Thu Sep 20 11:45:40 2018 +0200
+++ b/+time/Rungekutta4.m	Fri Oct 12 08:50:25 2018 +0200
@@ -39,7 +39,7 @@
         end
 
         function obj = step(obj)
-            obj.v = time.rk4.rungekutta_4(obj.v, obj.t, obj.k, obj.F);
+            obj.v = time.rk.rungekutta_4(obj.v, obj.t, obj.k, obj.F);
             obj.t = obj.t + obj.k;
             obj.n = obj.n + 1;
         end
--- a/+time/Rungekutta4SecondOrder.m	Thu Sep 20 11:45:40 2018 +0200
+++ b/+time/Rungekutta4SecondOrder.m	Fri Oct 12 08:50:25 2018 +0200
@@ -99,7 +99,7 @@
         end
 
         function obj = step(obj)
-            obj.w = time.rk4.rungekutta_4(obj.w, obj.t, obj.k, obj.F);
+            obj.w = time.rk.rungekutta_4(obj.w, obj.t, obj.k, obj.F);
             obj.t = obj.t + obj.k;
             obj.n = obj.n + 1;
         end
--- a/+time/Rungekutta4proper.m	Thu Sep 20 11:45:40 2018 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,42 +0,0 @@
-classdef Rungekutta4proper < time.Timestepper
-    properties
-        F
-        k
-        t
-        v
-        m
-        n
-    end
-
-
-    methods
-        % Timesteps v_t = F(v,t), using RK4 fromt t = t0 with timestep k and initial conditions v = v0
-        function obj = Rungekutta4proper(F, k, t0, v0)
-            obj.F = F;
-            obj.k = k;
-            obj.t = t0;
-            obj.v = v0;
-            obj.m = length(v0);
-            obj.n = 0;
-        end
-
-        function [v,t] = getV(obj)
-            v = obj.v;
-            t = obj.t;
-        end
-
-        function obj = step(obj)
-            obj.v = time.rk4.rungekutta_4(obj.v, obj.t, obj.k, obj.F);
-            obj.t = obj.t + obj.k;
-            obj.n = obj.n + 1;
-        end
-    end
-
-
-    methods (Static)
-        function k = getTimeStep(lambda)
-            k = rk4.get_rk4_time_step(lambda);
-        end
-    end
-
-end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+time/RungekuttaRV.m	Fri Oct 12 08:50:25 2018 +0200
@@ -0,0 +1,50 @@
+classdef RungekuttaRV < time.Timestepper
+    properties
+        F       % RHS of the ODE
+        k       % Time step
+        t       % Time point
+        v       % Solution vector
+        n       % Time level
+        RV      % Residual Viscosity
+        coeffs  % The coefficents used for the RK time integration
+    end
+
+    methods
+        function obj = RungekuttaRV(F, k, t0, v0, RV, order)
+            obj.F = F;
+            obj.k = k;
+            obj.t = t0;
+            obj.v = v0;
+            obj.n = 0;
+            obj.RV = RV;
+            % Extract the coefficients for the specified order
+            % used for the RK updates from the Butcher tableua.
+            [s,a,b,c] = time.rk.butcherTableau(order);
+            obj.coeffs = struct('s',s,'a',a,'b',b,'c',c);
+        end
+
+        function [v, t] = getV(obj)
+            v = obj.v;
+            t = obj.t;
+        end
+
+        function state = getState(obj)
+            [residual, u_t, grad_f] = obj.RV.getResidual();
+            state = struct('v', obj.v, 'residual', residual, 'u_t', u_t, 'grad_f', grad_f, 'viscosity', obj.RV.getViscosity(), 't', obj.t);
+        end
+
+        function obj = step(obj)
+            obj.v = time.rk.rungekuttaRV(obj.v, obj.t, obj.k, obj.F, obj.RV, obj.coeffs);
+            obj.t = obj.t + obj.k;
+            obj.n = obj.n + 1;
+        end
+    end
+
+
+    methods (Static)
+        function k = getTimeStep(lambda)
+            k = rk4.get_rk4_time_step(lambda);
+        end
+    end
+
+end
\ No newline at end of file