Mercurial > repos > public > sbplib
view +scheme/Hypsyst2dCurve.m @ 1223:9fddc8749445 rv_diffOp_test
Closing branch
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 05 Aug 2019 10:48:37 +0200 |
parents | 706d1c2b4199 |
children | 78db023a7fe3 |
line wrap: on
line source
classdef Hypsyst2dCurve < scheme.Scheme properties m % Number of points in each direction, possibly a vector n % size of system h % Grid spacing X,Y % Values of x and y for each grid point J, Ji % Jacobaian and inverse Jacobian xi,eta Xi,Eta A,B X_eta, Y_eta X_xi,Y_xi order % Order accuracy for the approximation D % non-stabalized scheme operator Ahat, Bhat, E H % Discrete norm Hxii,Hetai % Kroneckerd norms in xi and eta. I_xi,I_eta, I_N, onesN e_w, e_e, e_s, e_n index_w, index_e,index_s,index_n params % Parameters for the coeficient matrice end methods % Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Eu function obj = Hypsyst2dCurve(m, order, A, B, E, params, ti) default_arg('E', []) xilim = {0 1}; etalim = {0 1}; if length(m) == 1 m = [m m]; end obj.params = params; obj.A=A; obj.B=B; obj.Ahat=@(params,x,y,x_eta,y_eta)(A(params,x,y).*y_eta-B(params,x,y).*x_eta); obj.Bhat=@(params,x,y,x_xi,y_xi)(B(params,x,y).*x_xi-A(params,x,y).*y_xi); obj.E=@(params,x,y,~,~)E(params,x,y); m_xi = m(1); m_eta = m(2); m_tot=m_xi*m_eta; ops_xi = sbp.D2Standard(m_xi,xilim,order); ops_eta = sbp.D2Standard(m_eta,etalim,order); obj.xi = ops_xi.x; obj.eta = ops_eta.x; obj.Xi = kr(obj.xi,ones(m_eta,1)); obj.Eta = kr(ones(m_xi,1),obj.eta); obj.n = length(A(obj.params,0,0)); obj.onesN=ones(obj.n); obj.index_w=1:m_eta; obj.index_e=(m_tot-m_e metric_termsta+1):m_tot; obj.index_s=1:m_eta:(m_tot-m_eta+1); obj.index_n=(m_eta):m_eta:m_tot; I_n = eye(obj.n); I_xi = speye(m_xi); obj.I_xi = I_xi; I_eta = speye(m_eta); obj.I_eta = I_eta; D1_xi = kr(I_n, ops_xi.D1, I_eta); obj.Hxii = kr(I_n, ops_xi.HI, I_eta); D1_eta = kr(I_n, I_xi, ops_eta.D1); obj.Hetai = kr(I_n, I_xi, ops_eta.HI); obj.e_w = kr(I_n, ops_xi.e_l, I_eta); obj.e_e = kr(I_n, ops_xi.e_r, I_eta); obj.e_s = kr(I_n, I_xi, ops_eta.e_l); obj.e_n = kr(I_n, I_xi, metric_termsops_eta.e_r); [X,Y] = ti.map(obj.xi,obj.eta); [x_xi,x_eta] = gridDerivatives(X,ops_xi.D1,ops_eta.D1); [y_xi,y_eta] = gridDerivatives(Y,ops_xi.D1, ops_eta.D1); obj.X = reshape(X,m_tot,1); obj.Y = reshape(Y,m_tot,1); obj.X_xi = reshape(x_xi,m_tot,1); obj.Y_xi = reshape(y_xi,m_tot,1); obj.X_eta = reshape(x_eta,m_tot,1); obj.Y_eta = reshape(y_eta,m_tot,1); Ahat_evaluated = obj.evaluateCoefficientMatrix(obj.Ahat, obj.X, obj.Y,obj.X_eta,obj.Y_eta); Bhat_evaluated = obj.evaluateCoefficientMatrix(obj.Bhat, obj.X, obj.Y,obj.X_xi,obj.Y_xi); E_evaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,[],[]); obj.m = m; obj.h = [ops_xi.h ops_eta.h]; obj.order = order; obj.J = obj.X_xi.*obj.Y_eta - obj.X_eta.*obj.Y_xi; obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); obj.D = obj.Ji*(-Ahat_evaluated*D1_xi-Bhat_evaluated*D1_eta)-E_evaluated; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w',General boundary conditions'n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. function [closure, penalty] = boundary_condition(obj,boundary,type,L) default_arg('type','char'); switch type case{'c','char'} [closure,penalty] = boundary_condition_char(obj,boundary); case{'general'} [closure,penalty] = boundary_condition_general(obj,boundary,L); otherwise error('No such boundary condition') end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) error('Not implemented'); end function N = size(obj) N = obj.m; end function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y,x_,y_) params = obj.params; if isa(mat,'function_handle') [rows,cols] = size(mat(params,0,0,0,0)); x_ = kr(obj.onesN,x_); y_ = kr(obj.onesN,y_); matVec = mat(params,X',Y',x_',y_'); matVec = sparse(matVec); side = max(length(X),length(Y)); else matVec = mat; [rows,cols] = size(matVec); side = max(length(X),length(Y)); cols = cols/side; end ret = cell(rows,cols); for ii = 1:rows for jj = 1:cols ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); end end ret = cell2mat(ret); end %Characteristic boundary conditions function [closure, penalty] = boundary_condition_char(obj,boundary) params = obj.params; X = obj.X; Y = obj.Y; xi = obj.xi; eta = obj.eta; switch boundary case {'w','W','west'} e_ = obj.e_w; mat = obj.Ahat; boundPos = 'l'; Hi = obj.Hxii; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w)); side = max(length(eta)); case {'e','E','east'} e_ = obj.e_e; mat = obj.Ahat; boundPos = 'r'; Hi = obj.Hxii; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e)); side = max(length(eta)); case {'s','S','south'} e_ = obj.e_s; mat = obj.Bhat; boundPos = 'l'; Hi = obj.Hetai; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s)); side = max(length(xi)); case {'n','N','north'} e_ = obj.e_n; mat = obj.Bhat; boundPos = 'r'; Hi = obj.Hetai; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n)); side = max(length(xi)); end pos = signVec(1); zeroval = signVec(2); neg = signVec(3); switch boundPos case {'l'} tau = sparse(obj.n*side,pos); Vi_plus = Vi(1:pos,:); tau(1:pos,:) = -abs(D(1:pos,1:pos)); closure = Hi*e_*V*tau*Vi_plus*e_'; penalty = -Hi*e_*V*tau*Vi_plus; case {'r'} tau = sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); closure = Hi*e_*V*tau*Vi_minus*e_'; penalty = -Hi*e_*V*tau*Vi_minus; end end % General boundary condition in the form Lu=g(x) function [closure,penalty] = boundary_condition_general(obj,boundary,L) params = obj.params; X = obj.X; Y = obj.Y; xi = obj.xi; eta = obj.eta; switch boundary case {'w','W','west'} e_ = obj.e_w; mat = obj.Ahat; boundPos = 'l'; Hi = obj.Hxii; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w)); Ji_vec = diag(obj.Ji); Ji = diag(Ji_vec(obj.index_w)); xi_x = Ji*obj.Y_eta(obj.index_w); xi_y = -Ji*obj.X_eta(obj.index_w); L = obj.evaluateCoefficientMatrix(L,xi_x,xi_y,[],[]); side = max(length(eta)); case {'e','E','east'} e_ = obj.e_e; mat = obj.Ahat; boundPos = 'r'; Hi = obj.Hxii; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e)); Ji_vec = diag(obj.Ji); Ji = diag(Ji_vec(obj.index_e)); xi_x = Ji*obj.Y_eta(obj.index_e); xi_y = -Ji*obj.X_eta(obj.index_e); L = obj.evaluateCoefficientMatrix(L,-xi_x,-xi_y,[],[]); side = max(length(eta)); case {'s','S','south'} e_ = obj.e_s; mat = obj.Bhat; boundPos = 'l'; Hi = obj.Hetai; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s)); Ji_vec = diag(obj.Ji); Ji = diag(Ji_vec(obj.index_s)); eta_x = Ji*obj.Y_xi(obj.index_s); eta_y = -Ji*obj.X_xi(obj.index_s); L = obj.evaluateCoefficientMatrix(L,eta_x,eta_y,[],[]); side = max(length(xi)); case {'n','N','north'} e_ = obj.e_n; mat = obj.Bhat; boundPos = 'r'; Hi = obj.Hetai; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n)); Ji_vec = diag(obj.Ji); Ji = diag(Ji_vec(obj.index_n)); eta_x = Ji*obj.Y_xi(obj.index_n); eta_y = -Ji*obj.X_xi(obj.index_n); L = obj.evaluateCoefficientMatrix(L,-eta_x,-eta_y,[],[]); side = max(length(xi)); end pos = signVec(1); zeroval = signVec(2); neg = signVec(3); switch boundPos case {'l'} tau = sparse(obj.n*side,pos); Vi_plus = Vi(1:pos,:); Vi_minus = Vi(pos+1:obj.n*side,:); V_plus = V(:,1:pos); V_minus = V(:,(pos)+1:obj.n*side); tau(1:pos,:) = -abs(D(1:pos,1:pos)); R = -inv(L*V_plus)*(L*V_minus); closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; case {'r'} tau = sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_plus = Vi(1:pos,:); Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); V_plus = V(:,1:pos); V_minus = V(:,(pos+zeroval)+1:obj.n*side); R = -inv(L*V_minus)*(L*V_plus); closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; end end % Function that diagonalizes a symbolic matrix A as A=V*D*Vi % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign % [d+ ] % D = [ d0 ] % [ d-] % signVec is a vector specifying the number of possitive, zero and negative eigenvalues of D function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y,x_,y_) params = obj.params; syms xs ys if(sum(abs(x_)) ~= 0) syms xs_ else xs_ = 0; end if(sum(abs(y_))~= 0) syms ys_; else ys_ = 0; end [V, D] = eig(mat(params,xs,ys,xs_,ys_)); Vi = inv(V); syms xs ys xs_ ys_ xs = x; ys = y; xs_ = x_; ys_ = y_; side = max(length(x),length(y)); Dret = zeros(obj.n,side*obj.n); Vret = zeros(obj.n,side*obj.n); Viret = zeros(obj.n,side*obj.n); for ii = 1:obj.n for jj = 1:obj.n Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); end end D = sparse(Dret); V = sparse(Vret); Vi = sparse(Viret); V = obj.evaluateCoefficientMatrix(V,x,y,x_,y_); D = obj.evaluateCoefficientMatrix(D,x,y,x_,y_); Vi = obj.evaluateCoefficientMatrix(Vi,x,y,x_,y_); DD = diag(D); poseig = (DD>0); zeroeig = (DD==0); negeig = (DD<0); D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; end end end