view diracPrimDiscr1D.m @ 1210:5e7692ed7c7c feature/laplace_curvilinear_test

Add CG interface coupling
author Martin Almquist <malmquist@stanford.edu>
date Sun, 22 Sep 2019 19:05:17 -0700
parents 99fd66ffe714
children
line wrap: on
line source

% Generates discretized derivative of delta function in 1D
function ret = diracPrimDiscr1D(x_0in, x, m_order, s_order, H)

    % diracPrim satisfies one more moment condition than dirac
    m_order = m_order + 1;

    m = length(x);

    % Return zeros if x0 is outside grid
    if(x_0in < x(1) || x_0in > x(end) )

        ret = zeros(size(x));

    else

        fnorm = diag(H);
        eta = abs(x-x_0in);
        tot = m_order+s_order;
        S = [];
        M = [];

        % Get interior grid spacing
        middle = floor(m/2);
        h = x(middle+1) - x(middle);

        poss = find(tot*h/2 >= eta);

        % Ensure that poss is not too long
        if length(poss) == (tot + 2)
            poss = poss(2:end-1);
        elseif length(poss) == (tot + 1)
            poss = poss(1:end-1);
        end

        % Use first tot grid points
        if length(poss)<tot && x_0in < x(1) + ceil(tot/2)*h;
            index=1:tot;
            pol=(x(1:tot)-x(1))/(x(tot)-x(1));
            x_0=(x_0in-x(1))/(x(tot)-x(1));
            norm=fnorm(1:tot)/h;

        % Use last tot grid points
        elseif length(poss)<tot && x_0in > x(end) - ceil(tot/2)*h;
            index = length(x)-tot+1:length(x);
            pol = (x(end-tot+1:end)-x(end-tot+1))/(x(end)-x(end-tot+1));
            norm = fnorm(end-tot+1:end)/h;
            x_0 = (x_0in-x(end-tot+1))/(x(end)-x(end-tot+1));

        % Interior, compensate for round-off errors.
        elseif length(poss) < tot
            if poss(end)<m
                poss = [poss; poss(end)+1];
            else
                poss = [poss(1)-1; poss];
            end
            pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1)));
            x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1)));
            norm = fnorm(poss)/h;
            index = poss;

        % Interior
        else
            pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1)));
            x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1)));
            norm = fnorm(poss)/h;
            index = poss;
        end

        h_pol = pol(2)-pol(1);
        b = zeros(m_order+s_order,1);

        b(1) = 0;
        for i = 2:m_order
            b(i) = -(i-1)*x_0^(i-2);
        end

        for i = 1:(m_order+s_order)
            for j = 1:m_order
                M(j,i) = pol(i)^(j-1)*h_pol*norm(i);
            end
        end

        for i = 1:(m_order+s_order)
            for j = 1:s_order
                S(j,i) = (-1)^(i-1)*pol(i)^(j-1);
            end
        end

        A = [M;S];

        d = A\b;
        ret = x*0;
        ret(index) = d*(h_pol/h)^2;
    end

end