Mercurial > repos > public > sbplib
view +rv/+time/RungekuttaRvMultiStage.m @ 1176:ebec2b86f539 feature/rv
Update comments for RungekuttaRvMultiStage/Grid
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 28 Jun 2019 13:50:04 +0200 |
parents | d3bde8a23e08 |
children |
line wrap: on
line source
classdef RungekuttaRvMultiStage < time.Timestepper properties F % RHS of the ODE F_unstable % RHS of the unstabilized ODE k % Time step t % Time point v % Solution vector n % Time level rkScheme % The particular RK scheme used for time integration RV % Residual Viscosity operator DvDt % Function for computing the time deriative used for the RV evaluation v_unstable viscosity end methods function obj = RungekuttaRvMultiStage(F, F_unstable, k, t0, v0, RV, DvDt, order) obj.F = F; obj.F_unstable = F_unstable; obj.k = k; obj.t = t0; obj.v = v0; obj.n = 0; if (order == 4) % Use specialized RK4 scheme obj.rkScheme = @time.rk.rungekutta_4; else % Extract the coefficients for the specified order % used for the RK updates from the Butcher tableua. [s,a,b,c] = time.rk.butcherTableau(order); coeffs = struct('s',s,'a',a,'b',b,'c',c); obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs); end obj.RV = RV; obj.DvDt = DvDt; obj.v_unstable = 0*v0; obj.viscosity = 0*v0; end function [v, t] = getV(obj) v = obj.v; t = obj.t; end function state = getState(obj) dvdt = obj.DvDt(obj.v_unstable); [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt); state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', obj.viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t); end % Advances the solution vector one time step using the Runge-Kutta method given by % obj.coeffs, using a fixed residual viscosity for the Runge-Kutta substeps function obj = step(obj) % Advance solution by unstabilized scheme obj.v_unstable = obj.rkScheme(obj.v, obj.t, obj.k, obj.F_unstable); % Compute viscosity for current time level based on unstable solution (from next time level) % and the current solution. obj.viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt(obj.v_unstable)); % Fix the viscosity of the stabilized RHS m = length(obj.viscosity); F_stable = @(v,t) obj.F(v,t,spdiags(obj.viscosity,0,m,m)); % Advance solutiont to next time level by stabilized scheme. obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_stable); obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end